Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene

Abstract

Aniridia is a semidominant disorder in which development of the iris, lens, cornea and retina is disturbed. The mouse mutation Small eye (Sey), which has been proposed as a model for aniridia, results from defects in Pax–6, a gene containing paired–box and homeobox motifs that is specifically expressed in the developing eye and brain. To test the role of PAX6 in aniridia, we isolated human cDNA clones and determined the intron–exon structure of this gene. PAX6 spans 22 kilobases and is divided into 14 exons. Analysis of DNA from 10 unrelated aniridia patients revealed intragenic mutations in three familial and one sporadic case. These findings indicate that the human aniridia and murine Small eye phenotypes arise from homologous defects in PAX6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coulombre, A.G. Experimental embryology of the vertebrate eye. Invest. Ophthal. 4, 411–419 (1965).

    CAS  PubMed  Google Scholar 

  2. Walther, C. et al. Pax: a murine multigene family of paired box-containing genes. Genomics 11, 424–434 (1991).

    Article  CAS  Google Scholar 

  3. Gruss, P. & Walther, C. Pax in development. Cell 69, 719–722 (1992).

    Article  CAS  Google Scholar 

  4. Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  Google Scholar 

  5. Hill, R.E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991), erratum 355, 750 (1992).

    Article  CAS  Google Scholar 

  6. Glaser, T., Lane, J. & Housman, D. A mouse model for the aniridia-Wilms tumor deletion syndrome. Science 250, 823–827 (1990).

    Article  CAS  Google Scholar 

  7. van der Meer-de Jong, R. et al. Location of the gene involving the Small eye mutation on mouse chromosome 2 suggests homology with human aniridia 2 (AN2). Genomics 7, 270–275 (1990).

    Article  CAS  Google Scholar 

  8. Nelson, L.B., Spaeth, G.L., Nowinski, T.S., Margo, C.E. & Jackson, L. Aniridia. A review. Surv. Ophthalmol. 28, 621–642 (1984).

    Article  CAS  Google Scholar 

  9. Gessler, M., Simola, K.O.J. & Bruns, G.A.P. Cloning of breakpoints of a chromosome translocation identifies the AN2 locus. Science 244, 1575–1578 (1989).

    Article  CAS  Google Scholar 

  10. Davis, L.M., Everest, A.M., Simola, K.O.J. & Shows, T.B.. Long-range restriction map around 11 p13 aniridia locus. Somat. Cell molec. Genet. 15, 605–615 (1989).

    Article  CAS  Google Scholar 

  11. Rose, E. et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms' tumor gene. Cell 60, 495–508 (1990).

    Article  CAS  Google Scholar 

  12. Lyons, L.A., Martha, A., Mintz-Hittner, H.A., Saunders, G.F. & Ferrell, R.E. Resolution of the two loci for autosomal dominant aniridia, AN1 and AN2, to a single locus on chromosome 11p13. Genomics (in the press).

  13. Ton, C.T.T. et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074 (1991).

    Article  CAS  Google Scholar 

  14. Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genet. 1, 328–332 (1992).

    Article  CAS  Google Scholar 

  15. Treisman, J., Harris, E. & Desplan, C. The paired box encodes a second DNA-binding domain in the Paired homeo domain protein. Genes Dev. 594, 594–604 (1991).

    Article  Google Scholar 

  16. Treisman, J., Gonczy, P., Vashishtha, M., Harris, E. & Desplan, C. A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell 59, 553–562 (1989).

    Article  CAS  Google Scholar 

  17. Mermod, N., O'Neill, E.A., Kelly, T.J. & Tijan, R. The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58, 741–753 (1989).

    Article  CAS  Google Scholar 

  18. Tanaka, M. & Herr, W. Differential transcriptional activation by Oct-1 and Oct-2: Interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375–386 (1990).

    Article  CAS  Google Scholar 

  19. Krauss, S. et al. Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube. EMBO J. 10, 3609–3619 (1991).

    Article  CAS  Google Scholar 

  20. Puschel, A.W., Gruss, P. & Westerfield, M. Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114, 643–651 (1992).

    CAS  PubMed  Google Scholar 

  21. Krauss, S., Johansen, T., Korzh, V. & Fjose, A. Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113, 1193–1206 (1991).

    CAS  Google Scholar 

  22. Njolstad, P.R., Molven, A., Hordvik, I., Apold, J. & Fjose, A. Primary structure, developmentally regulated expression and potential duplication of the zebrafish homeobox gene ZF-21. Nucl. Acids Res. 16, 9097–9111 (1988).

    Article  CAS  Google Scholar 

  23. Nei, M. Molecular Evolutionary Genetics, 39–63 (Columbia University Press, New York, 1987).

    Google Scholar 

  24. Bastian, H. & Gruss, P. A murine even-skipped homologue, Evx1, is expressed during early embryogenesis and neurogenesis in a biphasic manner. EMBO J. 9, 1839–1852 (1990).

    Article  CAS  Google Scholar 

  25. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  26. Aebi, M., Hornig, H., Padgett, R.A., Reiser, J. & Weissman, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986).

    Article  CAS  Google Scholar 

  27. Senapathy, P., Shapiro, M.B. & Harris, N.L. Splice junctions, branch point sites, and exons: sequence statistics, identification and application to the genome project. Meth. Enzym. 183, 252–278 (1990).

    Article  CAS  Google Scholar 

  28. Cooper, D.N. & Youssoufian, H. The CpG dinucleotide and human genetic disease. Hum. Genet. 78, 151–155 (1988).

    Article  CAS  Google Scholar 

  29. Grundy, P. et al. Familial predisposition to Wilms' tumour does not map to the short arm of chromosome 11. Nature 336, 374–376 (1988).

    Article  CAS  Google Scholar 

  30. Huff, V. et al. Lack of linkage of familial Wilms' tumour to chromosomal band 11 p13. Nature 336, 377–378 (1988).

    Article  CAS  Google Scholar 

  31. Michaud, J. et al. Strand-separating conformational polymorphism analysis: Efficacy of detection of point mutations in the human ornithine d-aminotransferase gene. Genomics 13, 389–394 (1992).

    Article  CAS  Google Scholar 

  32. Lewis, E.B. The phenomenon of position effect. Adv. Genet. 3, 73–116 (1950).

    Article  CAS  Google Scholar 

  33. Theiler, K., Varnum, D.S. & Stevens, L.C. . Development of Dickie's Small eye, a mutation in the house mouse. Anat. Embryol. 155, 81–86 (1981).

    Article  Google Scholar 

  34. Hogan, B.L.M. et al. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97, 95–110 (1986).

    CAS  PubMed  Google Scholar 

  35. Epstein, D.J., Vekemans, M. & Gros, P. splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  Google Scholar 

  36. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  Google Scholar 

  37. Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  Google Scholar 

  38. Morrissey, D., Askew, D., Rai, L. & Weir, M. Functional dissection of the paired segmentation gene in Drosophila embryos. Genes Dev 5, 1684–1696 (1991).

    Google Scholar 

  39. Elsas, F.J., Maumenee, I.H., Kenyon, K.R. & Yoder, F. Familial aniridia with preserved ocular function. Am. J. Ophthalmol. 83, 718–724 (1977).

    Article  CAS  Google Scholar 

  40. Hodgson, S.V. & Saunders, K.E. A probable case of the homozygous condition of the aniridia gene. J. med. Genet. 17, 478–480 (1980).

    Article  CAS  Google Scholar 

  41. Chalepakis, G. et al. The molecular basis of the undulated/Pax-1 mutation. Cell 66, 873–884 (1991).

    Article  CAS  Google Scholar 

  42. Driever, W. & Nusslein-Volhard, C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  Google Scholar 

  43. Struhl, G., Johnston, P. & Lawrence, P.A. Control of Drosophila body pattern by the hunchback morphogen gradient. Cell 69, 237–249 (1992).

    Article  CAS  Google Scholar 

  44. Chisaka, O. & Capecchi, M. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox-1.5. Nature 350, 473–479 (1991).

    Article  CAS  Google Scholar 

  45. Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66, 1105–1119 (1991).

    Article  CAS  Google Scholar 

  46. Chisaka, O., Musci, T.S. & Capecchi, M.R. Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355, 516–520 (1992).

    Article  CAS  Google Scholar 

  47. Lechtenberg, R. & Ferretti, C. Ataxia with aniridia of Gillespie: a case report. Neurology 31, 95–97 (1981).

    Article  CAS  Google Scholar 

  48. McAvoy, J.W. Induction of the eye lens. Differentiation 17, 137–149 (1980).

    Article  CAS  Google Scholar 

  49. Henry, J.J. & Grainger, R.M. Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev. Biol. 141, 149–163 (1990).

    Google Scholar 

  50. Johnston, M.C., Noden, D.M., Hazetton, R.D., Coulombre, J.L & Coulombre, A.L. Origins of avian ocular and periocular tissues. Exp. Eye Res. 29, 27–43 (1979).

    Article  CAS  Google Scholar 

  51. De Robertis, E.M., Oliver, G. & Wright, C.V.E. Determination of axial polarity in the vertebrate embryo: Homeodomain proteins and homogenetic induction. Cell 57, 188–191 (1989).

    Article  Google Scholar 

  52. Hunt, P., Wilkinson, D. & Krumlauf, R. Patterning the vertebrate head: murine Hox-2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. Development 112, 43–50 (1991).

    CAS  PubMed  Google Scholar 

  53. McAvoy, J.W. Cytoplasmic processes interconnect lens placode and optic vesicle during eye morphogenesis. Exp. Eye Res. 31, 527–534 (1980).

    Article  CAS  Google Scholar 

  54. Glaser, T. et al. The beta subunit of follicle-stimulating hormone is deleted in patients with aniridia and Wilms' tumour, allowing a further definition of the WAGR locus. Nature 321, 882–887 (1986).

    Article  CAS  Google Scholar 

  55. Lewis, W.H. et al. Homozygous deletion of a DNA marker from chromosome 11p13 in sporadic Wilms' tumor. Genomics 3, 25–31 (1988).

    Article  CAS  Google Scholar 

  56. Simola, K.O.J., Knuutila, S., Kaitila, I., Pakola, A. & Pohja, P. Familial aniridia and translocation t(4;11)(q22;p13) without Wilms' tumor. Hum. Genet. 63, 158–161 (1983).

    Article  CAS  Google Scholar 

  57. Glaser, T., Housman, D., Lewis, W.H., Gerhard, D.S. & Jones, C. A fine-structure deletion map of human chromosome 11 p: analysis of the J1 series hybrids. Somat. Cell Molec. Genet. 15, 477–501 (1989).

    Article  CAS  Google Scholar 

  58. Glaser, T., Rose, E., Morse, H., Housman, D. & Jones, C. A panel of irradiation-reduced hybrids selectively retaining human chromosome 11p13: their structure and use to purify the WAGR gene complex. Genomics 6, 48–64 (1990).

    Article  CAS  Google Scholar 

  59. Friend, S.H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    Article  CAS  Google Scholar 

  60. Dressler, G.R., Deutsch, U., Chowdhury, K., Nornes, H.O. & Gruss, P. a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795 (1990).

    CAS  PubMed  Google Scholar 

  61. Marchuk, D., Drumm, M., Saulino, A. & Collins, F.S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids Res. 19, 1154 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, T., Walton, D. & Maas, R. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 2, 232–239 (1992). https://doi.org/10.1038/ng1192-232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1192-232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing