Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human genes containing polymorphic trinucleotide repeats

A Correction to this article was published on 01 March 1993

Abstract

Expansions of trinucleotide repeats within gene transcripts are responsible for fragile X syndrome, myotonic dystrophy and spinal and bulbar muscular atrophy. To identify other human genes with similar features as candidates for triplet repeat expansion mutations, we screened human cDNA libraries with repeat probes and searched databases for transcribed genes with repeats. From both strategies, 40 genes were identified and 14 characterized. Five were found to contain repeats which are highly polymorphic including the N–cadherin, BCR, glutathione–S–transferase and Na+/K+ ATPase (β–subunit) genes. These data demonstrate the occurrence of other human loci which may undergo this novel mechanism of mutagenesis giving rise to genetic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fu, Y.H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Verkerk, A.J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Vincent, A. et al. Abnormal pattern detected in fragile-X patients by pulsed-field gel electrophoresis. Nature 349, 624–626 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 24, 1179–1181 (1991).

    Article  Google Scholar 

  7. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Bell, M.V. et al. Physical mapping across the Fragile X: Hypermethylation and clinical expresion of the fragile X syndrome. Cell 64, 861–866 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Sutcliffe, J.S. et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. molec. Gen. (in the press).

  10. Sherman, S.L. et al. The marker(X) syndrome: A cytogenetic and genetic analysis. Ann. hum. Genet. 48, 21–37 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Sherman, S.L. et al. Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum. Genet. 69, 289–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Harper, P.S., Harley, H.G., Reardon, W. & Shaw, D.J. Review article: Anticipation in myotonic dystrophy: New light on an old problem. Am. J. hum. Genet. 51, 10–16 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Harley, H.G. et al. Unstable DNA sequence in myotonic dystrophy. Lancet 339, 1125–1128 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. La Spada, A.R. et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Biancalana, V. et al. Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum. molec. Gen. 1, 255–258 (1992).

    Article  CAS  Google Scholar 

  19. La Spada, A.R. et al. Meitotic stability and genotype-phenotype correlation of the expanded trinucleotide repeat sequence in X-linked spinal and bulbar muscular dystrophy. Nature Genet. (in the press).

  20. Miyake, S., Emori, Y. & Suzuki, K. Gene organization of the small subunit of human calcium-activated neutral protease. Nucl. Acids Res. 14, 8805–8817 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galjart, N.J. et al. Expression of cDNA encoding the human ‘protective protein’ associated with lysomsomal beta-galactosidase and neuraminidase: Homology to yeast proteases. Cell 54, 755–764 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Polymeropoulos, M.H., Rath, D.S., Xiao, H. & Merril, C.R. Trinucleotide repeat polymorphism at the human transcription factor IID gene. Nucl. Acids Res. 19, 4307 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez, I.L. et al. Variation among human 28S ribosomal RNA genes. Proc. natn. Acad. Sci. U.S.A. 82, 7666–7670 (1985).

    Article  CAS  Google Scholar 

  24. Strisciuglio, P. et al. The presence of a reduced amount of 32-kd “protective” protein is a distinct biochemical finding in late infantile galactosialidosis. Hum. Genet. 80, 304–306 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, X.Y. et al. A mutation in a mild form of galactosialidosis impairs dimerization of the protective protein and renders it unstable. EMBO J. 10, 4041–4048 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nanba, E., Tsuji, A., Omura, K. & Suzuki, Y. Galactosialidosis: molecular heterogeneity in biosynthesis and processing of protective protein for beta-galactosidase. Hum. Genet. 80, 329–332 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Sutherland, G.R. & Ledbetter, D.H. Report of the committee on cytogenetic markers. Cytogenet. Cell Genet. 51, 452–548 (1992).

    Article  Google Scholar 

  28. Richarrds, R.I. et al. Evidence of founder chromosomes in fragile X syndrome. Nature Genet. 1, 257–260 (1992).

    Article  Google Scholar 

  29. Harley, H.G. et al. Detection of linkage disequilibrium between the myotonic dystrophy locus and a new ploymorphic DNA marker. Am. J. hum. Genet. 49, 68–75 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nowell, P.C. & Hungerford, D.A. A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  31. Mir, M.A. et al. Sodium-potassium-ATPase and obesity. New Engl. J. Med. 310, 528–529 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Beutler, E., Kuhl, W. & Sacks, P. Sodium-potassium-ATPase activity is influenced by ethnic origin and not by obesity. New. Engl. J. Med. 309, 756–760 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Mir, M.A., Charalambous, B.M., Morgan, K. & Evans, P.J. Erythrocyte sodium-potassium-ATPase and sodium transport in obesity. New Engl. J. Med. 305, 1264–1268 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. McDonough, A.A., Geering, K. & Farley, R.A. The sodium pump needs its β subunit. FASEB J. 4, 1598–1605 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Idle, J.R. Is environmental carcinogenesis modulated by host polymorphism? Mutat Res. 247, 259–266 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Strange, R.C. et al. The human glutathione S-transferases: a case-control study of the incidence of the GST1 0 phenotype in patients with adenocarcinoma. Carcinogenesis 12, 25–28 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual, 2 edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  38. Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriciton fragment length polymorphisms. Am. J. hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shah, N.P., Witte, O.N. & Denny, C.T. Characterization of the BCR promoter in Philadelphia chromosme-positive and -negative cell lines. Molec. cell Biol. 11, 1854–1860 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoshino, S. et al. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8, 3807–3814 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reid, R.A. & Hemperly, J.J. Human N-cadherin nucleotide and deduced amino acid sequence. Nucl. Acids Res. 18, 5896 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lane, L.K., Shull, M.M., Whitmer, K.R. & Lingrel, J.B. Characterization of two genes for the human Na, K-ATPase beta subunit. Genomics 5, 445–453 (1990).

    Article  Google Scholar 

  43. Miyajima, N. et al. Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucl. Acids Res. 16, 11057–11074 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, Q.S., Heisterkamp, N. & Groffen, J. Unique organization of the human BCR gene promoter. Nucl. Acids Res. 18, 7119–7125 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKusick, V.A. Genetic Maps (Cold Spring Harbor Laboratory Press, New York, 1992).

    Google Scholar 

  46. Walsh, F.S. et al. N-cadherin gene maps to human chromosome 18 and is not linked to the E-cadherin gene. J. Neurochem. 55, 805–812 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Lane, L.K., Shull, M.M., Whitmer, K.R. & Lingrel, J.B. Characterization of two genes for the human Na, K-ATPase beta subunit. Genomics. 5, 445–453 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Yang Feng, T.L. et al. Chromosomal localization of human Na+, K+-ATPase alpha- and beta-subunit genes. Genomics 2, 128–138 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Ohno, S. et al. Four genes for the calpain family locate on four distinct human chromosomes. Cytogenet. Cell Genet. 53, 225–229 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Wiegant, J., Galjart, N.J., Raap, A.K. & d'Azzo, A. The gene encoding human protective protein (PPGB) is on chromosome 20. Genomics 10, 345–349 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riggins, G., Lokey, L., Chastain, J. et al. Human genes containing polymorphic trinucleotide repeats. Nat Genet 2, 186–191 (1992). https://doi.org/10.1038/ng1192-186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1192-186

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing