Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency

Abstract

Most eukaryotic cell types use a common program to regulate the process of cell division. During mitosis, successful partitioning of the genetic material depends on spatially coordinated chromosome movement and cell cleavage1. Here we characterize a zebrafish mutant, retsina (ret), that exhibits an erythroid-specific defect in cell division with marked dyserythropoiesis similar to human congenital dyserythropoietic anemia. Erythroblasts from ret fish show binuclearity and undergo apoptosis due to a failure in the completion of chromosome segregation and cytokinesis. Through positional cloning, we show that the ret mutation is in a gene (slc4a1) encoding the anion exchanger 1 (also called band 3 and AE1), an erythroid-specific cytoskeletal protein. We further show an association between deficiency in Slc4a1 and mitotic defects in the mouse. Rescue experiments in ret zebrafish embryos expressing transgenic slc4a1 with a variety of mutations show that the requirement for band 3 in normal erythroid mitosis is mediated through its protein 4.1R–binding domains. Our report establishes an evolutionarily conserved role for band 3 in erythroid-specific cell division and illustrates the concept of cell-specific adaptation for mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the phenotype associated with the ret mutation.
Figure 2: Analysis of the ret locus and expression pattern.
Figure 3: Functional analysis of the protein encoded by ret.
Figure 4: Role of band 3 in erythroid cytokinesis.
Figure 5: Erythroid cytokinesis defect in mouse and zebrafish band 3 mutants and structure–function relationship of mouse band 3 for rescuing anemia in ret embryos.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Field, C., Li, R. & Oegema, K. Cytokinesis in eukaryotes: a mechanistic comparison. Curr. Opin. Cell. Biol. 11, 68–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Ransom, D.G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996).

    CAS  PubMed  Google Scholar 

  3. Fukuda, M.N. Congenital dyserythropoietic anaemia type II (HEMPAS) and its molecular basis. Baillieres Clin. Haematol. 6, 493–511 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Wickramasinghe, S.N. Congenital dyserythropoietic anaemias: clinical features, haematological morphology and new biochemical data. Blood Rev. 12, 178–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Liao, E.C. et al. Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid β-spectrin structure, and function in red cell morphogenesis and membrane stability. Development 127, 5123–5132 (2000).

    CAS  PubMed  Google Scholar 

  6. Shafizadeh, E. et al. Characterization of zebrafish merlot/chablis as a non-mammalian vertebrate model for severe hereditary elliptocytosis due to protein 4.1 deficiency. Development 129, 4359–4370 (2002).

    CAS  PubMed  Google Scholar 

  7. Alloisio, N. et al. The cisternae decorating the red blood cell membrane in congenital dyserythropoietic anemia (type II) originating from the endoplasmic reticulum. Blood 87, 4433–4439 (1996).

    CAS  PubMed  Google Scholar 

  8. Wei, Y. et al. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Knapik, E.W. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio) Nat. Genet. 18, 338–343 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Handin, R.I., Lux, S.E. & Stossel, T.P. Blood: Principles and Practice of Hematology. (J.P. Lippincott, Philadelphia, 1995).

    Google Scholar 

  11. Fritz, A., Rozowski, M., Walker, C. & Westerfield, M. Identification of selected gamma-ray induced deficiencies in zebrafish using multiplex polymerase chain reaction. Genetics 144, 1735–1745 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peters, L.L. et al. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 86, 917–927 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Peters L.L. et al. Failure of effective reticulocytosis in a new spontaneous band 3 deficient mouse strain (C3H/HeJ-wan) and in a subset of targeted band 3 null mice (B6,129 AE1−/−) suggests the presence of genetic modifiers of band 3 function in red blood cells. Blood 92 Suppl. 1, 301 (1998).

    Google Scholar 

  14. Sekler, I., Lo, R.S. & Kopito, R.R. A conserved glutamate is responsible for ion selectivity and pH dependence of the mammalian anion exchangers AE1 and AE2. J. Biol. Chem. 270, 28751–28758 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Chernova, M.N. et al. Electrogenic sulfate/chloride exchange in Xenopus oocytes mediated by murine AE1 E699Q. J. Gen. Physiol. 109, 345–360 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jons, T. & Drenckhahn, D. Identification of the binding interface involved in linkage of cytoskeletal protein 4.1 to erythroid anion exchanger. EMBO J. 11, 2863–2867 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. An, X-L. et al. Modulation of band 3-ankyrin interaction by protein 4.1. J. Biol. Chem. 271, 33187–33191 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Lombardo, C.R., Willardson, B.M., Low, P.S. Localization of the protein 4.1-binding site on the cytoplasmic domain of erythrocyte membrane band 3. J. Biol. Chem. 267, 9540–9546 (1992).

    CAS  PubMed  Google Scholar 

  19. Shi, Z-T. et al. Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. J. Clin. Invest. 103, 331–340 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krauss, S.W. et al. Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division. J. Cell. Biol. 137, 275–289 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krauss, S.W. et al. Structural protein 4.1 is located in mammalian centrosomes. Proc. Natl. Acad. Sci. USA 94, 7297–7302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mattagajasingh, S.N. et al. A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J. Cell. Biol. 145, 29–43 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krauss, S.W. et al. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro. J. Biol. Chem. 277, 44339–44346 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Ferreiro, C.M. et al. 4.1R protein associate with interphase microtubules in human T cells. J. Biol. Chem. 276, 44785–44791 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Gasparini, P. et al. Localization of the congenital dyserythropoietic anemia II locus to chromosome 20q11.2 by genome-wide search. Am. J. Hum. Genet. 61, 1112–1116 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iolascon, A. et al. Genetic heterogeneity of congenital dyserythropoietic anemia type II. Blood 92, 2593–2594 (1998).

    CAS  PubMed  Google Scholar 

  27. De Franceschi, L. et al. Decreased band 3 anion transport activity and band 3 clusterization in congenital dyserythropoietic anemia type II. Exp. Hematol. 26, 869–873 (1998).

    CAS  PubMed  Google Scholar 

  28. Brownlie, A. et al. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat. Genet. 20, 244–250 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Farr, C.J., Saiki, R.K., Erlich, H.A., McCormick, F. & Marshall, C.J. Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc. Natl. Acad. Sci. USA 85, 1629–1633 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Dooley, C. Burns, D. Ransom, D. Traver, L. Washburn and C. Birkenmeier for critical review of the manuscript; P. Haffter and C. Nüsslein-Volhard for providing the WIK strain; C. Amemiya, A. Schier and W. Talbot for support and advice; S. Johnson for the DAR and SJD strains; M. Mueckler for SLC2A1 cDNA; M. Listewnik for assistance with the FISH experiments; and N. White and W. Saganic for the zebrafish husbandry. B.H.P. was supported by a Howard Hughes Medical Institutes Post-doctoral Fellowship for Physicians and the US National Institutes of Health. L.I.Z. is an Investigator of the Howard Hughes Medical Institutes. L.L.P. was supported by a US National Cancer Institute Cancer Core Grant to The Jackson Laboratory. The work was supported by funding from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paw, B., Davidson, A., Zhou, Y. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat Genet 34, 59–64 (2003). https://doi.org/10.1038/ng1137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing