Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Massive parallelism, randomness and genomic advances

Abstract

In reviewing the past decade, it is clear that genomics was, and still is, driven by innovative technologies, perhaps more so than any other scientific area in recent memory. From the outset, computing, mathematics and new automated laboratory techniques have been key components in allowing the field to move forward rapidly. We highlight some key innovations that have come together to nurture the explosive growth that makes a new era of genomics a reality. We also document how these new approaches have fueled further innovations and discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The growth of GenBank since 1992.
Figure 3: The growth of EST sequencing since 1992.
Figure 4: The number of publications listed in PubMed that contain the expressions 'EST' (shown as red squares; ref. 10), 'BAC' (green diamonds; ref. 93) and 'YAC' (blue triangles; ref. 94).
Figure 5: Citation tree for the original human EST paper by Adams et al.10.
Figure 6
Figure 7: The number of genomes sequenced each year since 1995.
Figure 8: Citation tree for the WGS sequencing of E. coli9.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kuska, B. Beer, Bethesda, and biology: how “genomics” came into being. J. Natl. Cancer Inst. 90, 93 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin-Gallardo, A. et al. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nat. Genet. 1, 34–39 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. McCombie, W.R. et al. Expressed genes, Alu repeats and polymorphisms in cosmids sequenced from chromosome 4p16.3. Nat. Genet. 1, 348–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Wada, A. The practicability of and necessity for developing a large-scale DNA-base sequencing system: toward the establishment of international super DNA-sequencing centers. Basic Life Sci. 46, 119–130 (1988).

    CAS  PubMed  Google Scholar 

  6. Wada, A. Fundamental significance of DNA mass-sequencing factory for biological sciences in future. Adv. Biophys. 30, 85–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Understanding Our Genetic Inheritance: The Human Genome Project, The First Five Years, FY 1991–1995. NIH Report 90–1590 (1990).

  8. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996).

    Article  Google Scholar 

  9. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Adams, M.D. et al. Complementary DNA sequencing: expressed-sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Roberts, L. Gambling on a shortcut to genome sequencing. Science 252, 1618–1619 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor–neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olson, M., Hood, L., Cantor, C. & Botstein, D. A common language for physical mapping of the human genome. Science 245, 1434–1435 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Putney, S.D., Herlihy, W.C. & Schimmel, P. A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. Nature 302, 718–721 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Papadopoulos, N. et al. Mutation of a Mutl homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Nicolaides, N.C. et al. Mutations of 2 Pms homologs in hereditary nonpolyposis colon cancer. Nature 371, 75–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Somerville, C. & Somerville, S. Plant functional genomics. Science 285, 380–383 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Wodicka, L., Dong, H.L., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Duggan, D.J., Bittner, M., Chen, Y.D., Meltzer, P. & Trent, J.M. Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Waterston, R. et al. A survey of expressed genes in Caenorhabditis elegans. Nat. Genet. 1, 114–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Okubo, K. et al. Large-scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat. Genet. 2, 173–179 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Adams, M.D., Kerlavage, A.R., Fields, C. & Venter, J.C. 3,400 new expressed-sequence tags identify diversity of transcripts in human brain. Nat. Genet. 4, 256–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Adams, M.D., Soares, M.B., Kerlavage, A.R., Fields, C. & Venter, J.C. Rapid cDNA sequencing (expressed-sequence tags) from a directionally cloned human infant brain cDNA library. Nat. Genet. 4, 373–386 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Newman, T. et al. Genes galore—a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 106, 1241–1255 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3–174 (1995).

    CAS  PubMed  Google Scholar 

  30. Hillier, L. et al. Generation and analysis of 280,000 human expressed-sequence tags. Genome Res. 6, 807–828 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Altschul, S.F., Boguski, M.S., Gish, W. & Wootton, J.C. Issues in searching molecular sequence databases. Nat. Genet. 6, 119–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Fernandesalnemri, T., Litwack, G. & Alnemri, E.S. Cpp32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell-death protein Ced-3 and mammalian interleukin-1β-converting enzyme. J. Biol. Chem. 269, 30761–30764 (1994).

    CAS  Google Scholar 

  34. Simonet, W.S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Messersmith, E.K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Sutton, G.G., White, O., Adams, M.D. & Kerlavage, A.R. TIGR Assembler: a new tool for assembling large shotgun sequencing projects. 1, 9–19 (1995).

  37. Fleischmann, R.D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Himmelreich, R. et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Philipp, W.J. et al. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc. Natl. Acad. Sci. USA 93, 3132–3137 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, J.R. & Doolittle, W.F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rubin, G.M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mural, R.J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296, 1661–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Tatusov, R.L., Koonin, E.V. & Lipman, D.J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Dujon, B. The yeast genome project: what did we learn? Trends Genet. 12, 263–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Lashkari, D.A. et al. Yeast microarrays for genome-wide parallel genetic and gene-expression analysis. Proc. Natl. Acad. Sci. USA 94, 13057–13062 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blackstock, W.P. & Weir, M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Yates, J.R. Mass spectrometry and the age of the proteome. J. Mass Spectrom. 33, 1–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Govan, J.R.W. & Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60, 539–574 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Merrick, M.J. & Edwards, R.A. Nitrogen control in bacteria. Microbiol. Rev. 59, 604–622 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pennisi, E. DNA sequencers' trial by fire. Science 280, 814–817 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Weber, J.L. & Myers, E.W. Human whole-genome shotgun sequencing. Genome Res. 7, 401–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Green, P. Against a whole-genome shotgun. Genome Res. 7, 410–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Meldrum, D. Automation for genomics, part one: preparation for sequencing. Genome Res. 10, 1081–1092 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Meldrum, D. Automation for genomics, part two: sequencers, microarrays, and future trends. Genome Res. 10, 1288–1303 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Stein, L.D. et al. The generic genome browser: a building block for a model organism system database. Genome Res. 12, 1599–1610 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doggett, N.A. et al. An integrated physical map of human chromosome 16. Nature 377, 335–365 (1995).

    CAS  PubMed  Google Scholar 

  61. Venter, J.C., Smith, H.O. & Hood, L. A new strategy for genome sequencing. Nature 381, 364–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Chou, H.H. & Holmes, M.H. DNA sequence quality trimming and vector removal. Bioinformatics 17, 1093–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Myers, E.W. Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol. 2, 275–290 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Myers, E.W. et al. A whole-genome assembly of Drosophila. Science 287, 2196–2204 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  68. Holt, R.A. et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome Res. 12, 177–189 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Mullikin, J.C. & Ning, Z. The phusion assembler. Genome Res. 13, 81–90 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kent, W.J. & Haussler, D. Assembly of the working draft of the human genome with GigAssembler. Genome Res. 11, 1541–1548 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, X. & Madan, A. CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pevzner, P.A., Tang, H. & Waterman, M.S. An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  76. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  77. Bankier, A.T. et al. The DNA sequence of the human cytomegalovirus genome. DNA Seq. 2, 1–12 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Baer, R. et al. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310, 207–211 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Seigneur, M., Bidnenko, V., Ehrlich, S.D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Takahashi, S., Kuzuyama, T., Watanabe, H. & Seto, H. A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-c-methyl-d-elythritol 4-phosphate in an alternative non-mevalonate pathway for terpenoid biosynthesis. Proc. Natl. Acad. Sci. USA 95, 9879–9884 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Razin, S., Yogev, D. & Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–1156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Perna, N.T. et al. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66, 3810–3817 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Hutchison, C.A. et al. Global transposon mutagenesis and a minimal mycoplasma genome. Science 286, 2165–2169 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Fraser, C.M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Mushegian, A.R. & Koonin, E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA 93, 10268–10273 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Drake, J.W., Charlesworth, B., Charlesworth, D. & Crow, J.F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawrence, J.G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 9413–9417 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Collins, F.S. Shattuck lecture—medical and societal consequences of the human genome project. N. Engl. J. Med. 341, 28–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794–8797 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burke, D.T., Carle, G.F. & Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Boguski, M.S. & Schuler, G.D. Establishing a human transcript map. Nat. Genet. 10, 369–371 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Schena, M. et al. Parallel human genome analysis: microarray-based expression monitoring of 1,000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bult, C.J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Redenbach, M. et al. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21, 77–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Tomb, J.F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Kunst, F. et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Klenk, H.P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Fraser, C.M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Andersson, S.G.E. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Deckert, G. et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Fraser, C.M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Gardner, M.J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, J.C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Paulsen, I.T., Brown, M.H. & Skurray, R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60, 575–608 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. J. Bact. 178, 5853–5859 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krokan, H.E., Standal, R. & Slupphaug, G. DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Miklos, G.L.G. & Rubin, G.M. The role of the genome project in determining gene function: insights from model organisms. Cell 86, 521–529 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Silver, S. & Phung, L.T. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Lowe, T.M. & Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gurtler, V. & Stanisich, V.A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142, 3–16 (1996).

    Article  PubMed  Google Scholar 

  114. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Stover, C.K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Perna, N.T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature 409, 529–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Kuroda, M. et al. Whole-genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357, 1225–1240 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Simpson, A.J.G. et al. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406, 151–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Elliott, S.J. et al. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Jain, R., Rivera, M.C. & Lake, J.A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96, 3801–3806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dandekar, T., Snel, B., Huynen, M. & Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Nunes-Duby, S.E., Kwon, H.J., Tirumalai, R.S., Ellenberger, T. & Landy, A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26, 391–406 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Surette, M.G., Miller, M.B. & Bassler, B.L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96, 1639–1644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295–317 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Sargent, F. et al. Overlapping functions of components of a bacterial Sec- independent protein export pathway. EMBO J. 17, 3640–3650 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Weiner, J.H. et al. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93, 93–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Hung, L.W. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Locher, K.P. et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95, 771–778 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Walhout, A.J.M. et al. Protein interaction mapping in C. elegans using proteins involved in vulval developement. Science 287, 116–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marcotte, E.M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Schwartz, S. et al. PipMaker—a Web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lukashin, A.V. & Borodovsky, M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 26, 1107–1115 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Richmond, C.S., Glasner, J.D., Mau, R., Jin, H.F. & Blattner, F.R. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27, 3821–3835 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tao, H., Bausch, C., Richmond, C., Blattner, F.R. & Conway, T. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bact. 181, 6425–6440 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Borton, H. Kowalski and M. Peterson for their help with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Craig Venter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venter, J., Levy, S., Stockwell, T. et al. Massive parallelism, randomness and genomic advances. Nat Genet 33 (Suppl 3), 219–227 (2003). https://doi.org/10.1038/ng1114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing