Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The application of molecular genetic approaches to the study of human evolution

Abstract

The past decade of advances in molecular genetic technology has heralded a new era for all evolutionary studies, but especially the science of human evolution. Data on various kinds of DNA variation in human populations have rapidly accumulated. There is increasing recognition of the importance of this variation for medicine and developmental biology and for understanding the history of our species. Haploid markers from mitochondrial DNA and the Y chromosome have proven invaluable for generating a standard model for evolution of modern humans. Conclusions from earlier research on protein polymorphisms have been generally supported by more sophisticated DNA analysis. Co-evolution of genes with language and some slowly evolving cultural traits, together with the genetic evolution of commensals and parasites that have accompanied modern humans in their expansion from Africa to the other continents, supports and supplements the standard model of genetic evolution. The advances in our understanding of the evolutionary history of humans attests to the advantages of multidisciplinary research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Summary tree of world populations.
Figure 2: Relationship between genetic and geographic distance.
Figure 3: The migration of modern Homo sapiens.
Figure 4: High resolution molecular phylogeny to study human history.
Figure 5: Language families of the world.

References

  1. 1

    Hirszfeld, L. & Hirszfeld, H. Essai d'application des methods au probléme des races. Anthropologie 29, 505–537 (1919).

    Google Scholar 

  2. 2

    Race, R.R. & Sanger, R. Blood Groups in Man (Blackwell Scientific, Oxford, 1975).

    Google Scholar 

  3. 3

    Ceppellini, R. et al. Genetics of leukocyte antigens. A family study of segregation and linkage. In Histocompatibility Testing (eds. Curtoni, E.S., Mattiuz, P.L. & Tosi, R.M.) (Munksgaard, Copenhagen, 1967).

    Google Scholar 

  4. 4

    Pauling, L., Itano, H.A., Singer, S.J. & Wells, I.C. Sickle-cell anemia, a molecular disease. Science 110, 543–548 (1949).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Harris, H. Enzyme polymorphisms in man. Proc. R. Soc. Lond. B 164, 298–310 (1966).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Lewontin, R.C. & Hubby, J.L. A molecular approach to the study of genetic hetrozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Mourant, A.E. The Distribution of Human Blood Groups (Blackwell Scientific, Oxford, 1954).

    Google Scholar 

  8. 8

    Mourant, A.E., Kopec, A.C. & Domaniewska-Sobczak, K. The Distribution of the Human Blood Groups and Other Polymorphisms (Oxford Univ. Press, London, 1976).

    Google Scholar 

  9. 9

    Mourant, A.E., Kopec, A.C. & Domaniewska-Sobczak, K. Blood Groups and Diseases (Oxford Univ. Press, Oxford, 1978).

    Google Scholar 

  10. 10

    Nei, M. & Roychoudhury, A.K. Human Polymorphic Genes: World Distribution (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  11. 11

    Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Rosenberg, N.A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Stephens, J.C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, NJ, 1994).

    Google Scholar 

  15. 15

    Xiao, W. & Oefner, P.J. Denaturing high-performance liquid chromatography. Hum. Mutat. 17, 439–474.

  16. 16

    Oberacher, H. et al. Re-sequencing of multiple single nucleotide polymorphisms by liquid chromatography—electrospray ionization mass spectrometry. Nucleic Acids Res. 30, e67.

  17. 17

    Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Przeworski, M., Hudson, R.R. & Di Rienzo, A. Adjusting the focus on human variation. Trends Genet. 16, 296–302 (2000).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Hudson, R.R., Kreitman, M. & Aquadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Muse, S.V. & Gaut, B.S. A likelihood approach for comparing synonymous and non-synonymous nucleotide substitutions. Mol. Biol. Evol. 11, 715–724 (1994).

    CAS  PubMed  Google Scholar 

  23. 23

    Yang, Z. & Nielsen, R. Synonymous and non-synonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 46, 409–418 (1998).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Tishkoff, S.A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Verrelli, B.C. et al. Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am. J. Hum. Genet. 71, 1112–1128 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Bamshad, M.J. et al. A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc. Natl. Acad. Sci. USA 99, 10539–10544 (2002).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Huttley, G.A. et al. Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Nat. Genet. 25, 410–413 (2000).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Toomajian, C. & Kreitman, M. Sequence variation and haplotype structure at the human HFE locus. Genetics 161, 1609–1623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Cavalli-Sforza, L.L. Population structure and human evolution. Proc. R. Soc. Lond. B 164, 362–379 (1966).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Lewontin, R.C. & Krakauer, J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Weir, B.W. Genetic Data Analysis II (Sinauer, Sunderland, MA, 1996).

    Google Scholar 

  34. 34

    Akey, J.M., Zhang, G., Zhang, K., Jin, L. & Shriver, M.D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Hamblin, M.T., Thompson, E.E. & Di Rienzo, A. Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Hollox, E.J. et al. Lactase haplotype diversity in the Old World. Am. J. Hum. Genet. 68, 160–172 (2001).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Gilad, Y., Rosenberg, S., Przeworski, M., Lancet, D. & Skorecki, K. Evidence for positive selection and population structure at the human MAO-A gene. Proc. Natl. Acad. Sci. USA 99, 862–867 (2002).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Rana, B.K. et al. High polymorphism at the human melanocortin 2 receptor locus. Genetics 151, 1547–1557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Goldstein, D.B. & Chikhi, L. Human migrations and population structure: what we know and why it matters. Annu. Rev. Genom. Hum. Genet. 3, 129–152 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Cavalli-Sforza, L.L. Some current problems in human population genetics. Am. J. Hum. Genet. 25, 82–104 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Clark, A.G. et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Ewens, W.J. in Mathematical Population Genetics 98–104 (Springer, Berlin, 1979).

    Google Scholar 

  43. 43

    Feldman, M.W. & Christiansen, F.B. The effect of population subdivision on two loci without selection. Genet. Res. 24, 151–162 (1974).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. & Lander, E.S. High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222 (2001).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Goldstein, D.B. Islands of linkage disequilibrium. Nat. Genet. 29, 109–111 (2001).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Reich, D.E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat. Genet. 32, 135–142 (2002).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Payne, R., Feldman, M.W., Cann, H. & Bodmer, J.G. A comparison of HLA data of the North American black with African black and North American caucasoid populations. Tissue Antigens 9, 135–147 (1977).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Kidd, K.K. et al. A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus. Hum. Genet. 103, 211–227 (1998).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Reich, D.E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    CAS  Article  Google Scholar 

  51. 51

    Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Edwards, A.W.F. & Cavalli-Sforza L.L. Reconstruction of evolutionary trees. In Phenetic and Phylogenetic Classification (eds. Heywood, V.E. & McNeill, J.) 67–76 (The Systematics Association, London, 1964).

    Google Scholar 

  53. 53

    Cavalli-Sforza, L.L. & Edwards, A.W.F. Analysis of human evolution. Proc. 11th Int. Congr. Genet. 2, 923–933 (1964).

    Google Scholar 

  54. 54

    Cavalli-Sforza, L.L. & Edwards, A.W.F. Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19, 223–257 (1967).

    Google Scholar 

  55. 55

    Menozzi, P., Piazza, A. & Cavalli-Sforza, L.L. Synthetic maps of human gene frequencies in Europe. Science 201, 786–792 (1978).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Bowcock, A.M. et al. Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proc. Natl. Acad. Sci. USA 88, 839–843 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Bowcock, A.M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

    CAS  Article  PubMed  Google Scholar 

  58. 58

    Cavalli-Sforza, L.L. & Piazza, A. Analysis of evolution: evolutionary rates, independence, and treeness. Theor. Popul. Biol. 8, 127–165 (1975).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Pritchard, J.K., Stephens, M. & Donnelly, P.J. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Lewontin, R.C. The apportionment of human diversity. In Evolutionary Biology Vol. 6 (eds. Dobzhansky, T.H., Hecht, M.K. & Steere, W.C.) 381–398 (Appleton-Century-Crofts, New York, 1972).

    Chapter  Google Scholar 

  61. 61

    Nei, M & Roychoudhury, A.K. Genic variation within and between the three major races of Man, Caucasoids, Negroids, and Mongoloids. Am J. Hum. Genet. 26, 421–443 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Barbujani, G., Magagni, A., Minch, E. & Cavalli-Sforza, L.L. An apportionment of human DNA diversity. Proc. Natl. Acad. Sci. USA 94, 4516–4519 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Cavalli-Sforza, L.L., Piazza, A., Menozzi, P. & Mountain, J. Reconstruction of human evolution; bringing together genetic, archaeological, and linguistic data. Proc. Natl. Acad. Sci. USA 85, 6002–6006 (1988).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Brown, W.M., George, M. Jr. & Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971 (1979).

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Johnson, M.J., Wallace, D.C., Ferris, S.D., Rattazzi, M.C. & Cavalli-Sforza, L.L. Radiation of human mitochondrial DNA types analyzed by restriction endonuclease cleavage patterns. J. Mol. Evol. 19, 255–271 (1983).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Mountain, J.L., Lin, A.A., Bowcock, A.M. & Cavalli-Sforza, L.L. Evolution of modern humans: evidence from nuclear DNA polymorphisms. Phil. Trans. R. Soc. Lond. B. 337, 159–165 (1992).

    CAS  Article  Google Scholar 

  67. 67

    Cann, R.L., Stoneking, M. & Wilson, A.C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Templeton, A.R. Human origins and analysis of mitochondrial DNA sequences. Science 255, 737 (1992).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Chen, Y.-S., Torroni, A., Excoffier, L., Santachiara-Benerecetti, A.S. & Wallace, D.C. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am. J. Hum. Genet. 57, 133–149 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ingman, M. Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Shen, P. et al. Population genetic implications from DNA polymorphism in random human genomic sequences. Hum. Mutat. 20, 209–217 (2002).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Satta, Y., Klein, J. & Takahata, N. DNA archives and our nearest relative: the trichotomy problem revisited. Mol. Phylogenet. Evol. 14, 259–275 (2000).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Rosenberg, N.A & Feldman, M.W. The relationship between coalescent times and population divergence times. In Modern Developments in Theoretical Population Genetics (eds. Slatkin, M. & Veuille, M) 130–164 (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  74. 74

    Rogers, A.R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

    CAS  PubMed  Google Scholar 

  75. 75

    Tang, H., Siegmund, D.O., Shen, P., Oefner, P.J. & Feldman, M.W. Frequentist estimation of coalescence times from nucleotide sequence data using a tree-based partition. Genetics 161, 447–459 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Kajander, O.A., Karhunen, P.J., Holt, I.J. & Jacobs, H.T. Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep. 2, 1007–1012 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Underhill, P.A. et al. Y chromosome sequence variation and the history of human populations. Nat. Genet. 26, 358–361 (2000).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Hammer, M.F. et al. Hierarchical patterns of global human Y-chromosome diversity. Mol. Biol. Evol. 18, 1189–1203 (2001).

    CAS  PubMed  Article  Google Scholar 

  79. 79

    Paracchini, S., Arredi, B., Chalk, R. & Tyler-Smith, C. Hierarchical high-throughput SNP genotyping of the human Y chromosome using MALDI-TOF mass spectrometry. Nucleic Acids Res. 30, e27 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Kingman, J.F.C. The coalescent. Stochastic Processes and their Applications. 13, 235–248 (1982).

    Google Scholar 

  81. 81

    Hudson, R.R. Gene genealogies and the coalescent process. Oxf. Surv. Evol. Biol. 7, 203–217 (1990).

    Google Scholar 

  82. 82

    Griffiths, R.C. & Tavaré, R.C. Ancestral inference in population genetics. Stat. Sci. 9, 307–319 (1994).

    Article  Google Scholar 

  83. 83

    Thomson, R., Pritchard, J.K., Shen, P., Oefner, P.J. & Feldman, M.W. Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proc. Natl. Acad. Sci. USA 97, 7360–7365 (2000).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Seielstad, M.T., Minch, E. & Cavalli-Sforza, L.L. Genetic evidence for a higher female migration rate in humans. Nat. Genet. 20, 278–280 (1998).

    CAS  Article  PubMed  Google Scholar 

  85. 85

    Salem, A.H., Badr, F.M., Gaballah, M.F. & Pääbo, S. The genetics of traditional living: Y-chromosomal and mitochondrial lineages in the Sinai Peninsula. Am. J. Hum. Genet. 59, 741–743 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Sajantila, A. et al. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. Proc. Natl. Acad. Sci. USA 93, 12035–12039 (1995).

    Article  Google Scholar 

  87. 87

    Finnilä, S., Hassinen, I.E., Ala-Kokko, L. & Majamaa, K. Phylogenetic network of the mtDNA haplogroup U in northern Finland based on sequence analysis of the complete coding region by conformation-sensitive gel electrophoresis. Am. J. Hum. Genet. 66, 1017–1026 (2000).

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Richards, M. et al. Tracing European founder lineages in the near eastern mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Zerjal, T. et al. Genetic relationships of Asians and northern Europeans, revealed by Y-chromosomal DNA analysis. Am. J. Hum. Genet. 60, 1174–1183 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Richards, M., Oppenheimer, S. & Sykes, B. mtDNA suggests Polynesian origins in eastern Indonesia. Am. J. Hum. Genet. 62, 1234–1236 (1998).

    Article  Google Scholar 

  91. 91

    Kayser, M. et al. Melanesian origin of Polynesian Y chromosomes. Curr. Biol. 10, 1237–1246 (2000).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Underhill, P.A. et al. Maori origins, Y chromosome haplotypes and implications for human history in the Pacific. Hum. Mutat. 17, 271–280 (2001).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Oota, H., Settheetham-Ishida, W., Tiwaweck, D., Ishida, T. & Stoneking, M. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat. Genet. 29, 20–21 (2001).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Templeton, A.R. Out of Africa again and again. Nature 416, 45–51 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Steinmetz, L.M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002)

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Underhill, P. et al. The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann. Hum. Genet. 65, 43–62 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Lahr, M.M. & Foley, R. Multiple dispersals and modern human origins. Evol. Anthropol. 3, 48–60 (1994).

    Article  Google Scholar 

  98. 98

    Lahr, M.M. & Foley, R.A. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Am. J. Phys. Anthropol. 27, 137–176 (1998).

    PubMed  Article  Google Scholar 

  99. 99

    Stringer, C. Coasting out of Africa. Nature 405, 24–27 (2000).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Greenberg, J. Language in the Americas (Stanford Univ. Press, Stanford, CA, 1987).

    Google Scholar 

  101. 101

    Fagan, B.M. The Great Journey: The Peopling of Ancient America (Thames and Hudson, London, 1987).

    Google Scholar 

  102. 102

    Weidenreich, F. Apes, Giants, and Man (Univ. Chicago Press, Chicago, IL, 1946).

    Google Scholar 

  103. 103

    Wolpoff, M.H. Multiregional evolution: The fossil alternative to Eden. In The Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans (eds. Mellar, P. & Stringer, C) 62–108 (Princeton Univ. Press, Princeton, NJ, 1989).

    Google Scholar 

  104. 104

    Weiss, K.M. & Maruyama, T. Archeology, population genetics and studies of human racial ancestry. Am. J. Phys. Anthropol. 44, 31–50 (1976).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Krings, M., Geisert, H., Schmitz, R.W., Krainitzki, H. & Pääbo, S. DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proc. Natl. Acad. Sci. USA 96, 5581–5585 (1999).

    CAS  PubMed  Article  Google Scholar 

  107. 107

    Krings, M. et al. A view of Neandertal genetic diversity. Nat. Genet. 26, 144–146 (2000).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Ovchinnikov, I.V. et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404, 490–493 (2000).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Harding, R.M. et al. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet. 60, 772–789 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Harris, E.E. & Hey, J. X-chromosome evidence for ancient human histories. Proc. Natl. Acad. Sci. USA 96, 3320–3324 (1999).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Knowles, L.L. & Madison, W.P. Statistical phylogeography. Mol. Ecol. 11, 2623–2635 (2002).

    PubMed  Article  Google Scholar 

  112. 112

    Kidd, J.R. et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am. J. Hum. Genet. 66, 1882–1899 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Osier, M.V. et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    The Y Chromosome Consortium. A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 12, 339–348 (2002).

  115. 115

    Slatkin, M. & Hudson, R.R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Donnelly, P. Interpreting genetic variability: the effects of shared evolutionary history. In Variation in the Human Genome, Ciba Foundation Symposium No. 197 (Wiley, Chichester, UK, 1996).

    Google Scholar 

  117. 117

    Anati, E. The Intellectual Expressions of Prehistoric Man: Art and Religion. Acts of the Valcamonica Symposium '79. Centro Camuno di Studi Preistorici, Capo di Ponte, Brescia, Italy, and (Editoriale Jaca Book SpA, Milano, Italy, 1983).

    Google Scholar 

  118. 118

    Conkey, M.W., Soffer, O., Stratmann, D. & Jablonski, N.G. (eds.) Beyond Art: Pleistocene Image and Symbol, Watts Symposium Series in Anthropology: Memoirs of the California Academy of Sciences No. 23 (California Academy of Sciences, San Francisco, CA, 1997).

    Google Scholar 

  119. 119

    McBrearty, S. & Brooks, A.S. The revolution that wasn't: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Lieberman, P. & Crelin, E.S. On the speech of Neanderthal man. Linguistic Inquiry. 2, 203–222 (1971).

    Google Scholar 

  121. 121

    Arensburg, B., Schepartz, L.A., Tillier, A.M., Vandermeersch, B. & Rak, Y. A reappraisal of the anatomical basis for human speech in Middle Paleolithic hominids. Am. J. Phys. Anthropol. 83, 137–146 (1990).

    CAS  PubMed  Article  Google Scholar 

  122. 122

    Greenberg, J.H. The Languages of Africa (Bloomington, Indiana, 1963).

    Google Scholar 

  123. 123

    Greenberg, J.H. The Indo-Pacific Hypothesis. Current Trends in Linguistics, Volume 8, 809–871 (1971).

    Google Scholar 

  124. 124

    Greenberg, J.H. Indo-European and Its Closest Relatives: The Eurasiatic Language Family: Grammar (Stanford Univ. Press, Stanford, California, 2000).

    Google Scholar 

  125. 125

    Ruhlen, M. On the Origin of Languages: Studies in Linguistic Taxonomy (Stanford Univ. Press, Stanford, California, 1994).

    Google Scholar 

  126. 126

    Eshel, I. & Cavalli-Sforza, L.L. Assortment of encounters and evolution of cooperativeness. Proc. Natl. Acad. Sci. USA 79, 1331–1335 (1982).

    CAS  PubMed  Article  Google Scholar 

  127. 127

    Klein, R.G. The Human Career 2nd edn (Univ. of Chicago Press, Chicago, IL, 1999).

    Google Scholar 

  128. 128

    Ammerman, A.J. & Cavalli-Sforza, L.L. The Neolithic Transition and the Genetics of Populations in Europe (Princeton Univ. Press, Princeton, New Jersey, 1984).

    Book  Google Scholar 

  129. 129

    King, R. & Underhill, P.A. Congruent distribution of Neolithic painted pottery and ceramic figurines with Y-chromosome lineages. Antiquity 76, 707–714 (2002).

    Article  Google Scholar 

  130. 130

    Chikhi, L., Destro-Bisol, G., Bertorelle, G., Pascali, V. & Barbujani, G. Clines of nuclear DNA markers suggest a largely Neolithic ancestry of the European gene pool. Proc. Natl. Acad. Sci. USA 95, 9053–9058 (1998).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Chikhi, L., Nichols, R.A., Barbujani, G. & Beaumont, M.A. Y genetic data support the Neolithic demic diffusion model. Proc. Natl. Acad. Sci. USA 99, 11008–11013 (2002).

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Renfrew, C. Archaeology and Language: The Puzzle of Indo-European Origins (Jonathan Cape, London, 1987).

    Google Scholar 

  133. 133

    Bellwood, P.S. The colonization of the Pacific: some current hypotheses. In The Colonization of the Pacific: A Genetic Trail (eds. Hill, A.V.S. & Serjeantson, S.W.) 1–59 (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  134. 134

    Cavalli-Sforza, L.L., Minch, E. & Mountain, J. Coevolution of genes and languages revisited. Proc. Natl. Acad. Sci. USA 89, 5620–5624 (1992).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Cavalli-Sforza, L.L. & Feldman, M.W. Cultural Transmission and Evolution: A Quantitative Approach. (Princeton Univ. Press, Princeton, New Jersey, 1981).

    Google Scholar 

  136. 136

    Cavalli-Sforza, L.L. Genes, Peoples and Languages (North Point Press, New York, 2000).

    Google Scholar 

  137. 137

    Sugimoto, C. et al. Typing of urinary JC virus DNA offers a novel means of tracing human migrations. Proc. Natl. Acad. Sci. USA 94, 9191–9196 (1997).

    CAS  PubMed  Article  Google Scholar 

  138. 138

    Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333 (1999).

    CAS  PubMed  Article  Google Scholar 

  139. 139

    Mountain, J.L. et al. SNPSTRs: Empirically derived, rapidly typed, autosomal haplotypes for inference of population history and mutational processes. Genome Res. 12, 1766–1772 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Hewlett, B.S., De Silvestri, A. & Guglielmino, C.R. Semes and genes in Africa. Curr. Anthropol. 43, 313–321 (2002).

    Article  Google Scholar 

  141. 141

    Latter, B.D.H. Genetic differences within and between populations of the major human subgroups. Am. Nat. 116, 220–237 (1980).

    Article  Google Scholar 

  142. 142

    Ryman, N., Chakraborty, R. & Nei, M. Differences in the relative distribution of human gene diversity between electrophoretic, and red and white cell antigen loci. Hum. Hered. 33, 93–102 (1983).

    CAS  PubMed  Article  Google Scholar 

  143. 143

    Kivisild, T. et al. The genetic heritage of earliest settlers persist in both the Indian tribal and caste populations. Am. J. Hum. Genet. (in the press).

  144. 144

    Thangaraj, K. et al. Genetic affinities of the Andaman islanders, a vanishing human population. Curr. Biol. (in the press).

  145. 145

    Semino, O., Santachiara-Benerecetti, A.S., Falaschi, F., Cavalli-Sforza, L.L. & Underhill, P.A. Ethopians and Khoisan share the deepest clades of the human Y-chromosome phylogeny. Am. J. Hum. Genet. 70, 265–268 (2002).

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Cruciani, F. et al. An Asia to sub-Saharan Africa back migration is supported by high-resolution analysis of human Y chromosome haplotypes. Am. J. Hum. Genet. 70, 1197–1214 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Underhill and P. Oefner for comments on early drafts of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus W. Feldman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cavalli-Sforza, L., Feldman, M. The application of molecular genetic approaches to the study of human evolution. Nat Genet 33, 266–275 (2003). https://doi.org/10.1038/ng1113

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing