Review Article | Published:

The application of molecular genetic approaches to the study of human evolution

Nature Genetics volume 33, pages 266275 (2003) | Download Citation

Subjects

Abstract

The past decade of advances in molecular genetic technology has heralded a new era for all evolutionary studies, but especially the science of human evolution. Data on various kinds of DNA variation in human populations have rapidly accumulated. There is increasing recognition of the importance of this variation for medicine and developmental biology and for understanding the history of our species. Haploid markers from mitochondrial DNA and the Y chromosome have proven invaluable for generating a standard model for evolution of modern humans. Conclusions from earlier research on protein polymorphisms have been generally supported by more sophisticated DNA analysis. Co-evolution of genes with language and some slowly evolving cultural traits, together with the genetic evolution of commensals and parasites that have accompanied modern humans in their expansion from Africa to the other continents, supports and supplements the standard model of genetic evolution. The advances in our understanding of the evolutionary history of humans attests to the advantages of multidisciplinary research.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Essai d'application des methods au probléme des races. Anthropologie 29, 505–537 (1919).

  2. 2.

    & Blood Groups in Man (Blackwell Scientific, Oxford, 1975).

  3. 3.

    et al. Genetics of leukocyte antigens. A family study of segregation and linkage. In Histocompatibility Testing (eds. Curtoni, E.S., Mattiuz, P.L. & Tosi, R.M.) (Munksgaard, Copenhagen, 1967).

  4. 4.

    , , & Sickle-cell anemia, a molecular disease. Science 110, 543–548 (1949).

  5. 5.

    Enzyme polymorphisms in man. Proc. R. Soc. Lond. B 164, 298–310 (1966).

  6. 6.

    & A molecular approach to the study of genetic hetrozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).

  7. 7.

    The Distribution of Human Blood Groups (Blackwell Scientific, Oxford, 1954).

  8. 8.

    , & The Distribution of the Human Blood Groups and Other Polymorphisms (Oxford Univ. Press, London, 1976).

  9. 9.

    , & Blood Groups and Diseases (Oxford Univ. Press, Oxford, 1978).

  10. 10.

    & Human Polymorphic Genes: World Distribution (Oxford Univ. Press, New York, 1988).

  11. 11.

    , , & Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).

  12. 12.

    et al. Genetic structure of human populations. Science 298, 2381–2385 (2002).

  13. 13.

    et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001).

  14. 14.

    , & The History and Geography of Human Genes (Princeton Univ. Press, Princeton, NJ, 1994).

  15. 15.

    & Denaturing high-performance liquid chromatography. Hum. Mutat. 17, 439–474.

  16. 16.

    et al. Re-sequencing of multiple single nucleotide polymorphisms by liquid chromatography—electrospray ionization mass spectrometry. Nucleic Acids Res. 30, e67.

  17. 17.

    et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

  18. 18.

    Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

  19. 19.

    , & Adjusting the focus on human variation. Trends Genet. 16, 296–302 (2000).

  20. 20.

    , & A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

  21. 21.

    Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

  22. 22.

    & A likelihood approach for comparing synonymous and non-synonymous nucleotide substitutions. Mol. Biol. Evol. 11, 715–724 (1994).

  23. 23.

    & Synonymous and non-synonymous rate variation in nuclear genes of mammals. J. Mol. Evol. 46, 409–418 (1998).

  24. 24.

    et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

  25. 25.

    et al. Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am. J. Hum. Genet. 71, 1112–1128 (2002).

  26. 26.

    et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

  27. 27.

    et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

  28. 28.

    et al. A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc. Natl. Acad. Sci. USA 99, 10539–10544 (2002).

  29. 29.

    et al. Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Nat. Genet. 25, 410–413 (2000).

  30. 30.

    & Sequence variation and haplotype structure at the human HFE locus. Genetics 161, 1609–1623 (2002).

  31. 31.

    Population structure and human evolution. Proc. R. Soc. Lond. B 164, 362–379 (1966).

  32. 32.

    & Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195 (1973).

  33. 33.

    Genetic Data Analysis II (Sinauer, Sunderland, MA, 1996).

  34. 34.

    , , , & Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

  35. 35.

    , & Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002).

  36. 36.

    et al. Lactase haplotype diversity in the Old World. Am. J. Hum. Genet. 68, 160–172 (2001).

  37. 37.

    , , , & Evidence for positive selection and population structure at the human MAO-A gene. Proc. Natl. Acad. Sci. USA 99, 862–867 (2002).

  38. 38.

    et al. High polymorphism at the human melanocortin 2 receptor locus. Genetics 151, 1547–1557 (1999).

  39. 39.

    & Human migrations and population structure: what we know and why it matters. Annu. Rev. Genom. Hum. Genet. 3, 129–152 (2002).

  40. 40.

    Some current problems in human population genetics. Am. J. Hum. Genet. 25, 82–104 (1973).

  41. 41.

    et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

  42. 42.

    in Mathematical Population Genetics 98–104 (Springer, Berlin, 1979).

  43. 43.

    & The effect of population subdivision on two loci without selection. Genet. Res. 24, 151–162 (1974).

  44. 44.

    , , , & High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001).

  45. 45.

    , & Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222 (2001).

  46. 46.

    Islands of linkage disequilibrium. Nat. Genet. 29, 109–111 (2001).

  47. 47.

    et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat. Genet. 32, 135–142 (2002).

  48. 48.

    , , & A comparison of HLA data of the North American black with African black and North American caucasoid populations. Tissue Antigens 9, 135–147 (1977).

  49. 49.

    et al. A global survey of haplotype frequencies and linkage disequilibrium at the DRD2 locus. Hum. Genet. 103, 211–227 (1998).

  50. 50.

    et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

  51. 51.

    et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

  52. 52.

    & Reconstruction of evolutionary trees. In Phenetic and Phylogenetic Classification (eds. Heywood, V.E. & McNeill, J.) 67–76 (The Systematics Association, London, 1964).

  53. 53.

    & Analysis of human evolution. Proc. 11th Int. Congr. Genet. 2, 923–933 (1964).

  54. 54.

    & Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19, 223–257 (1967).

  55. 55.

    , & Synthetic maps of human gene frequencies in Europe. Science 201, 786–792 (1978).

  56. 56.

    et al. Drift, admixture, and selection in human evolution: A study with DNA polymorphisms. Proc. Natl. Acad. Sci. USA 88, 839–843 (1991).

  57. 57.

    et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).

  58. 58.

    & Analysis of evolution: evolutionary rates, independence, and treeness. Theor. Popul. Biol. 8, 127–165 (1975).

  59. 59.

    , & Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

  60. 60.

    The apportionment of human diversity. In Evolutionary Biology Vol. 6 (eds. Dobzhansky, T.H., Hecht, M.K. & Steere, W.C.) 381–398 (Appleton-Century-Crofts, New York, 1972).

  61. 61.

    & Genic variation within and between the three major races of Man, Caucasoids, Negroids, and Mongoloids. Am J. Hum. Genet. 26, 421–443 (1974).

  62. 62.

    , , & An apportionment of human DNA diversity. Proc. Natl. Acad. Sci. USA 94, 4516–4519 (1997).

  63. 63.

    , , & Reconstruction of human evolution; bringing together genetic, archaeological, and linguistic data. Proc. Natl. Acad. Sci. USA 85, 6002–6006 (1988).

  64. 64.

    , & Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967–1971 (1979).

  65. 65.

    , , , & Radiation of human mitochondrial DNA types analyzed by restriction endonuclease cleavage patterns. J. Mol. Evol. 19, 255–271 (1983).

  66. 66.

    , , & Evolution of modern humans: evidence from nuclear DNA polymorphisms. Phil. Trans. R. Soc. Lond. B. 337, 159–165 (1992).

  67. 67.

    , & Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

  68. 68.

    Human origins and analysis of mitochondrial DNA sequences. Science 255, 737 (1992).

  69. 69.

    , , , & Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am. J. Hum. Genet. 57, 133–149 (1995).

  70. 70.

    , & Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).

  71. 71.

    et al. Population genetic implications from DNA polymorphism in random human genomic sequences. Hum. Mutat. 20, 209–217 (2002).

  72. 72.

    , & DNA archives and our nearest relative: the trichotomy problem revisited. Mol. Phylogenet. Evol. 14, 259–275 (2000).

  73. 73.

    & The relationship between coalescent times and population divergence times. In Modern Developments in Theoretical Population Genetics (eds. Slatkin, M. & Veuille, M) 130–164 (Oxford Univ. Press, Oxford, 2002).

  74. 74.

    & Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

  75. 75.

    , , , & Frequentist estimation of coalescence times from nucleotide sequence data using a tree-based partition. Genetics 161, 447–459 (2002).

  76. 76.

    , , & Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep. 2, 1007–1012 (2001).

  77. 77.

    et al. Y chromosome sequence variation and the history of human populations. Nat. Genet. 26, 358–361 (2000).

  78. 78.

    et al. Hierarchical patterns of global human Y-chromosome diversity. Mol. Biol. Evol. 18, 1189–1203 (2001).

  79. 79.

    , , & Hierarchical high-throughput SNP genotyping of the human Y chromosome using MALDI-TOF mass spectrometry. Nucleic Acids Res. 30, e27 (2002).

  80. 80.

    The coalescent. Stochastic Processes and their Applications. 13, 235–248 (1982).

  81. 81.

    Gene genealogies and the coalescent process. Oxf. Surv. Evol. Biol. 7, 203–217 (1990).

  82. 82.

    & Ancestral inference in population genetics. Stat. Sci. 9, 307–319 (1994).

  83. 83.

    , , , & Recent common ancestry of human Y chromosomes: evidence from DNA sequence data. Proc. Natl. Acad. Sci. USA 97, 7360–7365 (2000).

  84. 84.

    , & Genetic evidence for a higher female migration rate in humans. Nat. Genet. 20, 278–280 (1998).

  85. 85.

    , , & The genetics of traditional living: Y-chromosomal and mitochondrial lineages in the Sinai Peninsula. Am. J. Hum. Genet. 59, 741–743 (1996).

  86. 86.

    et al. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the Finnish population. Proc. Natl. Acad. Sci. USA 93, 12035–12039 (1995).

  87. 87.

    , , & Phylogenetic network of the mtDNA haplogroup U in northern Finland based on sequence analysis of the complete coding region by conformation-sensitive gel electrophoresis. Am. J. Hum. Genet. 66, 1017–1026 (2000).

  88. 88.

    et al. Tracing European founder lineages in the near eastern mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276 (2000).

  89. 89.

    et al. Genetic relationships of Asians and northern Europeans, revealed by Y-chromosomal DNA analysis. Am. J. Hum. Genet. 60, 1174–1183 (1997).

  90. 90.

    , & mtDNA suggests Polynesian origins in eastern Indonesia. Am. J. Hum. Genet. 62, 1234–1236 (1998).

  91. 91.

    et al. Melanesian origin of Polynesian Y chromosomes. Curr. Biol. 10, 1237–1246 (2000).

  92. 92.

    et al. Maori origins, Y chromosome haplotypes and implications for human history in the Pacific. Hum. Mutat. 17, 271–280 (2001).

  93. 93.

    , , , & Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat. Genet. 29, 20–21 (2001).

  94. 94.

    Out of Africa again and again. Nature 416, 45–51 (2002).

  95. 95.

    et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002)

  96. 96.

    et al. The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann. Hum. Genet. 65, 43–62 (2001).

  97. 97.

    & Multiple dispersals and modern human origins. Evol. Anthropol. 3, 48–60 (1994).

  98. 98.

    & Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Am. J. Phys. Anthropol. 27, 137–176 (1998).

  99. 99.

    Coasting out of Africa. Nature 405, 24–27 (2000).

  100. 100.

    Language in the Americas (Stanford Univ. Press, Stanford, CA, 1987).

  101. 101.

    The Great Journey: The Peopling of Ancient America (Thames and Hudson, London, 1987).

  102. 102.

    Apes, Giants, and Man (Univ. Chicago Press, Chicago, IL, 1946).

  103. 103.

    Multiregional evolution: The fossil alternative to Eden. In The Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans (eds. Mellar, P. & Stringer, C) 62–108 (Princeton Univ. Press, Princeton, NJ, 1989).

  104. 104.

    & Archeology, population genetics and studies of human racial ancestry. Am. J. Phys. Anthropol. 44, 31–50 (1976).

  105. 105.

    et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).

  106. 106.

    , , , & DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proc. Natl. Acad. Sci. USA 96, 5581–5585 (1999).

  107. 107.

    et al. A view of Neandertal genetic diversity. Nat. Genet. 26, 144–146 (2000).

  108. 108.

    et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404, 490–493 (2000).

  109. 109.

    et al. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet. 60, 772–789 (1997).

  110. 110.

    & X-chromosome evidence for ancient human histories. Proc. Natl. Acad. Sci. USA 96, 3320–3324 (1999).

  111. 111.

    & Statistical phylogeography. Mol. Ecol. 11, 2623–2635 (2002).

  112. 112.

    et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am. J. Hum. Genet. 66, 1882–1899 (2000).

  113. 113.

    et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99 (2002).

  114. 114.

    The Y Chromosome Consortium. A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 12, 339–348 (2002).

  115. 115.

    & Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).

  116. 116.

    Interpreting genetic variability: the effects of shared evolutionary history. In Variation in the Human Genome, Ciba Foundation Symposium No. 197 (Wiley, Chichester, UK, 1996).

  117. 117.

    The Intellectual Expressions of Prehistoric Man: Art and Religion. Acts of the Valcamonica Symposium '79. Centro Camuno di Studi Preistorici, Capo di Ponte, Brescia, Italy, and (Editoriale Jaca Book SpA, Milano, Italy, 1983).

  118. 118.

    , , & (eds.) Beyond Art: Pleistocene Image and Symbol, Watts Symposium Series in Anthropology: Memoirs of the California Academy of Sciences No. 23 (California Academy of Sciences, San Francisco, CA, 1997).

  119. 119.

    & The revolution that wasn't: a new interpretation of the origin of modern human behavior. J. Hum. Evol. 39, 453–563 (2000).

  120. 120.

    & On the speech of Neanderthal man. Linguistic Inquiry. 2, 203–222 (1971).

  121. 121.

    , , , & A reappraisal of the anatomical basis for human speech in Middle Paleolithic hominids. Am. J. Phys. Anthropol. 83, 137–146 (1990).

  122. 122.

    The Languages of Africa (Bloomington, Indiana, 1963).

  123. 123.

    The Indo-Pacific Hypothesis. Current Trends in Linguistics, Volume 8, 809–871 (1971).

  124. 124.

    Indo-European and Its Closest Relatives: The Eurasiatic Language Family: Grammar (Stanford Univ. Press, Stanford, California, 2000).

  125. 125.

    On the Origin of Languages: Studies in Linguistic Taxonomy (Stanford Univ. Press, Stanford, California, 1994).

  126. 126.

    & Assortment of encounters and evolution of cooperativeness. Proc. Natl. Acad. Sci. USA 79, 1331–1335 (1982).

  127. 127.

    The Human Career 2nd edn (Univ. of Chicago Press, Chicago, IL, 1999).

  128. 128.

    & The Neolithic Transition and the Genetics of Populations in Europe (Princeton Univ. Press, Princeton, New Jersey, 1984).

  129. 129.

    & Congruent distribution of Neolithic painted pottery and ceramic figurines with Y-chromosome lineages. Antiquity 76, 707–714 (2002).

  130. 130.

    , , , & Clines of nuclear DNA markers suggest a largely Neolithic ancestry of the European gene pool. Proc. Natl. Acad. Sci. USA 95, 9053–9058 (1998).

  131. 131.

    , , & Y genetic data support the Neolithic demic diffusion model. Proc. Natl. Acad. Sci. USA 99, 11008–11013 (2002).

  132. 132.

    Archaeology and Language: The Puzzle of Indo-European Origins (Jonathan Cape, London, 1987).

  133. 133.

    The colonization of the Pacific: some current hypotheses. In The Colonization of the Pacific: A Genetic Trail (eds. Hill, A.V.S. & Serjeantson, S.W.) 1–59 (Oxford Univ. Press, New York, 1989).

  134. 134.

    , & Coevolution of genes and languages revisited. Proc. Natl. Acad. Sci. USA 89, 5620–5624 (1992).

  135. 135.

    & Cultural Transmission and Evolution: A Quantitative Approach. (Princeton Univ. Press, Princeton, New Jersey, 1981).

  136. 136.

    Genes, Peoples and Languages (North Point Press, New York, 2000).

  137. 137.

    et al. Typing of urinary JC virus DNA offers a novel means of tracing human migrations. Proc. Natl. Acad. Sci. USA 94, 9191–9196 (1997).

  138. 138.

    , , , & Helicobacter pylori virulence and genetic geography. Science 284, 1328–1333 (1999).

  139. 139.

    et al. SNPSTRs: Empirically derived, rapidly typed, autosomal haplotypes for inference of population history and mutational processes. Genome Res. 12, 1766–1772 (2002).

  140. 140.

    , & Semes and genes in Africa. Curr. Anthropol. 43, 313–321 (2002).

  141. 141.

    Genetic differences within and between populations of the major human subgroups. Am. Nat. 116, 220–237 (1980).

  142. 142.

    , & Differences in the relative distribution of human gene diversity between electrophoretic, and red and white cell antigen loci. Hum. Hered. 33, 93–102 (1983).

  143. 143.

    et al. The genetic heritage of earliest settlers persist in both the Indian tribal and caste populations. Am. J. Hum. Genet. (in the press).

  144. 144.

    et al. Genetic affinities of the Andaman islanders, a vanishing human population. Curr. Biol. (in the press).

  145. 145.

    , , , & Ethopians and Khoisan share the deepest clades of the human Y-chromosome phylogeny. Am. J. Hum. Genet. 70, 265–268 (2002).

  146. 146.

    et al. An Asia to sub-Saharan Africa back migration is supported by high-resolution analysis of human Y chromosome haplotypes. Am. J. Hum. Genet. 70, 1197–1214 (2002).

Download references

Acknowledgements

We thank P. Underhill and P. Oefner for comments on early drafts of the manuscript.

Author information

Affiliations

  1. Department of Genetics, Stanford Medical School, Stanford University, Stanford, California 94305-5120, USA.

    • L. Luca Cavalli-Sforza
  2. Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.

    • Marcus W. Feldman

Authors

  1. Search for L. Luca Cavalli-Sforza in:

  2. Search for Marcus W. Feldman in:

Corresponding author

Correspondence to Marcus W. Feldman.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/ng1113

Further reading