Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant genetics: a decade of integration

Abstract

The last decade provided the plant science community with the complete genome sequence of Arabidopsis thaliana and rice, tools to investigate the function of potentially every plant gene, methods to dissect virtually any aspect of the plant life cycle, and a wealth of information on gene expression and protein function. Focusing on Arabidopsis as a model system has led to an integration of the plant sciences that triggered the development of new technologies and concepts benefiting plant research in general. These enormous changes led to an unprecedented increase in our understanding of the genetic basis and molecular mechanisms of developmental, physiological and biochemical processes, some of which will be discussed in this article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progress in our molecular genetic understanding of flower development.
Figure 2: Plants respond to environmental light conditions through several distinct photoreceptors with sensitivities ranging from far-red/red in phytochromes, to blue/ultraviolet-A in cryptochromes and phototropins, to ultraviolet-B in as yet unidentified receptors (top)62,63,64,65,66,67.
Figure 3: Plant-pathogen interactions.
Figure 4: From QTL to QTN.
Figure 5: Epigenetic phenomena and underlying mechanisms.

Similar content being viewed by others

References

  1. Mendel, G. Versuche über Pflanzen Hybriden. Verhandlungen des naturforschenden Vereines in Brünn 4, 3–47 (1866).

    Google Scholar 

  2. Correns, C.G. Mendels Regel über das Verhalten der Nachkommenschaft der rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft 18, 158–168 (1900).

    Google Scholar 

  3. de Vries, H. Sur la loi de disjonction des hybrides. Comptes Rendus de l'Academie des Sciences (Paris) 130, 845–847 (1900).

    Google Scholar 

  4. Tschermak, E. Über künstliche Kreuzung bei Pisum sativum. Berichte der Deutschen Botanischen Gesellschaft 18, 232–239 (1900).

    Google Scholar 

  5. McClintock, B. The control of gene action in maize. Brookhaven Symp. Biol. 18, 162–184 (1965).

    Google Scholar 

  6. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous gene in trans. Plant Cell 2, 279–289 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. & Stuitje, A.R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, C.J.S. et al. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224, 477–481 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Laibach, F. Zur Frage nach der Individualität der Chromosomen in Pflanzenreich. Beih. Bot. Cbl. (1 Abt.) 22, 197–210 (1907).

    Google Scholar 

  10. Laibach, F. Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungs-physiologische Untersuchungen. Bot. Arch. 44, 439–455 (1943).

    Google Scholar 

  11. Langridge, J. Biochemical mutations in the crucifer Arabidopsis thaliana (L.) Heynh. Nature 76, 260–261 (1955).

    Article  Google Scholar 

  12. Redei, G.P. Supervital mutants of Arabidopsis. Genetics 47, 443–460 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leutwiler, L.S., Hough-Evans, B.R. & Meyerowitz, E.M. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194, 15–23 (1984).

    Article  CAS  Google Scholar 

  14. Pruitt, R.E. & Meyerowitz, E.M. Characterization of the genome of Arabidopsis thaliana. J. Mol. Biol. 187, 169–183 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Redei, G.P. Arabidopsis as a genetic tool. Annu. Rev. Genet. 9, 111–127 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Meyerowitz, E.M. & Pruitt, R.E. Arabidopsis thaliana and plant molecular genetics. Science 229, 1214–1218 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Estelle, M.A. & Somerville, C.R. The mutants of Arabidopsis. Trends Genet. 2, 89–93 (1986).

    Article  Google Scholar 

  18. Meyerowitz, E.M. Arabidopsis thaliana. Annu. Rev. Genet. 21, 93–111 (1987).

    Google Scholar 

  19. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  20. Goff, S.A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Raikhel, N.V. & Minorsky, P.V. Celebrating plant diversity. Plant Phys. 127, 1325–1327 (2001).

    Article  CAS  Google Scholar 

  23. Schaefer, D.G. Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4, 143–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chatterjee, A. & Roux, S.J. Ceratopteris richardii: a productive model for revealing secrets of signaling and development. J. Plant Growth Regul. 19, 284–289 (2002).

    Article  Google Scholar 

  25. Carpenter, R. & Coen, E.S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4, 1483–1493 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. & Sommer, H. Genetic control of flower development: homeotic genes of Antirrhinum majus. Science 250, 931–936 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Bowman, J.L., Smyth, D.R. & Meyerowitz, E.M. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112, 1–20 (1991).

    CAS  PubMed  Google Scholar 

  28. Sommer, H. et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yanofsky, M.F. et al. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346, 35–40 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Lewis, E.B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Gehring W.J. Homeo boxes in the study of development. Science 236, 1245–1252 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Jack, T., Brockman, L.L. & Meyerowitz, E.M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68, 683–697 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Goto, K. & Meyerowitz, E.M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Mandel, M.A. et al. Manipulation of flower structure in transgenic tobacco. Cell 71, 133–143 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Tröbner, W. et al. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704 (1992).

    Article  Google Scholar 

  36. Huijser, P. et al. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11, 1239–1249 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the Plena locus of Antirrhinum. Cell 72, 85–95 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Drews, G.N., Bowman, J.L. & Meyerowitz, E.M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65, 991–1002 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Mandel, M.A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M.F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273–277 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Mizukami, Y. & Ma, H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119–131 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Jack, T., Fox, G.L. & Meyerowitz, E.M. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76, 703–716 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Sakai, H., Medrano, L.J. & Meyerowitz, E.M. Arabidopsis floral boundary maintenance by SUPERMAN. Nature 378, 199–203 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Krizek, B.A. & Meyerowitz, E.M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22 (1996).

    CAS  PubMed  Google Scholar 

  44. Mandel, M.A. & Yanofsky, M.F. A gene triggering flower formation in Arabidopsis. Nature 377, 522–524 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Coen, E.S. et al. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63, 1311–1322 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. & Meyerowitz, E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Parcy, F., Nilsson, O., Busch, M.A., Lee, I. & Weigel, D. A genetic framework for floral patterning. Nature 395, 561–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Busch, M.A., Bomblies, K. & Weigel, D. Activation of a floral homeotic gene in Arabidopsis. Science 285, 585–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Wagner, D. Sablowski, R.W.M. & Meyerowitz, E.M. Transcriptional activation of APETALA1 by LEAFY. Science 285, 582–584 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Ambrose, B.A. et al. Molecular and genetic analysis of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5, 569–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Kyozuka, J., Kobayashi, T., Morita, M. & Shimamoto, K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41, 710–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Tandre, K., Svenson, M., Svensson, M.E. & Engstrom, P. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 15, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Sundstrom, J. et al. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev. Genet. 25, 253–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Mouradov, A. et al. DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev. Genet. 25, 245–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Angenent, G.C., Franken, J., Busscher, M., Weiss, D. & van Tunen, A.J. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. & Lifschitz, E. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6, 175–186 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. & Yanofsky, M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Egea-Cortines, M., Saedler, H. & Sommer, H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370–5379 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Honma, T. & Goto, K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. & Yanofsky, M.F. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11, 182–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Goethe, J.W. The Metamorphosis of Plants translated by A. Arber as Goethe's botany. Chronica Botanica 10, 67–115 (1946).

    Google Scholar 

  62. Cashmore, A.R., Jarillo, J.A., Wu, Y.J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Quail, P.H. et al. Phytochromes: photosensory perception and signal transduction. Science 268, 675–680 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Quail, P.H. The phytochrome family: dissection of functional roles and signalling pathways among family members. Phil. Trans. R. Soc. Lond. B 353, 1399–1403 (1998).

    Article  CAS  Google Scholar 

  65. Whitelam, G.C., Patel, S. & Devlin, P.F. Phytochromes and photomorphogenesis in Arabidopsis. Phil. Trans. R. Soc. Lond. B 353, 1445–1453 (1998).

    Article  CAS  Google Scholar 

  66. Briggs, W.R. & Olney, M.A. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol. 125, 85–88 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Neff, M.M., Fankhauser, C. & Chory, J. Light: an indicator of time and place. Genes Dev. 14, 257–271 (2000).

    CAS  PubMed  Google Scholar 

  68. Harmer, S.L., Panda, S. & Kay, S.A. Molecular bases of circadian rhythms. Annu. Rev. Cell. Dev. Biol. 17, 215–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. McClung, C.R., Salomé, P.A. & Michael, T.P. The Arabidopsis circadian system. In The Arabidopsis Book online <http://www.aspb.org/publications/arabidopsis/> (eds. Somerville, C.R. & Meyerowitz, E.M.) (ASPB, Rockville, USA, 2002). doi/10.1199/tab.0044.

    Google Scholar 

  70. Koornneef, M., Rolff, E. & Spruit, C.J.P. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (l.) Heynh. Z. Pflanzenphysiol. 100, 147–160 (1980).

    Article  Google Scholar 

  71. Ahmad, M. & Cashmore, A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Ahmad, M., Jarillo, J.A., Smirnova, O. & Cashmore, A.R. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1, 939–948 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Más, P., Devlin, P.F., Panda, S. & Kay, S.A. Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207–211 (2000).

    Article  PubMed  Google Scholar 

  74. Ahmad, M., Jarillo, J.A., Smirnova, O & Cashmore, A.R. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392, 720–723 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Kume, K. et al. MCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I. & Goodman H.M. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11, 335–347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kohchi, T. et al. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13, 425–436 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. & Chory, J. Mutations in the gene for the red far-red light receptor phytochrome-B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147–157 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Devlin, P.F., Patel, S.R. & Whitelam, G.C. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10, 1479–1487 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aukerman, M.J. et al. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9, 1317–1326 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dehesh, K. et al. Arabidopsis Hy8 locus encodes phytochrome-A. Plant Cell 5, 1081–1088 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Whitelam, G.C. et al. Phytochrome-A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757–768 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koornneef, M. & Kendrick, R.E. Photomorphogenic mutants of higher plants. In Photomorphogenesis in Plants (eds. Kendrick, R.E. & Kronenberg, G.H.M.) 601–628 (Kluwer Academic, Dordrecht, 1994).

    Chapter  Google Scholar 

  85. Ni, M., Tepperman, J.M. & Quail, P.H. PIF3, a phytochrome interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Kircher, S. et al. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445–1456 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ni, M., Tepperman, J.M. & Quail, P.H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400, 781–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Yeh, K.-C. & Lagarias, J.C. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA 95, 13976–13981 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yeh, K.C., Wu, S.H., Murphy, J.T. & Lagarias, J.C. A cyanobacterial phytochrome two component light regulatory sensory system. Science 277, 1505–1508 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Fankhauser, C. et al. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539–1541 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Chory, J., Peto, C., Feinbaum, R., Pratt, L. & Ausubel, F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58, 991–999 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Deng, X.W., Caspar, T. & Quail, P.H. Cop1—a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5, 1172–1182 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Deng, X.W. & Quail, P.H. Signalling in light-controlled development. Semin. Cell Dev. Biol. 10, 121–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Wei, N. et al. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr. Biol. 8, 919–922 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Osterlund, M.T., Hardtke, C.S., Wei, N. & Deng, X.-W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Oyama, T., Shimura, Y., & Okada, K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983–2995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chattopadhyay, S. et al. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673–683 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ang, L.H. et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y. & Deng, X.-W. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154–158 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Briggs, W.R. & Christie, J.M. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7, 204–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Liscum, E. & Briggs, W.R. Mutations in the NPH1 locus disrupt the perception of phototropic stimuli. Plant Cell 7, 473–485 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huala, E. et al. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278, 2120–2123 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Christie, J.M. et al. Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698–1701 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Kagawa, T. et al. Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Sakai, T. et al. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98, 6969–6974 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moore-Ede, C.M., Sulzman, F.M. & Fuller, C.A. The Clocks That Time Us (Harvard Univ. Press, Cambridge, MA) (1982).

    Google Scholar 

  107. Harmer, S.L. et al. Orchestarted transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Schaffer, R. et al. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113–123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bagnall, D.J. & King, R.W. Phytochrome, photosynthesis and flowering of Arabidopsis thaliana: photophysiological studies using mutants and transgenic lines. Aust. J. Plant Physiol. 28, 401–408 (2001).

    CAS  Google Scholar 

  110. Pineiro, M. & Coupland, G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol. 117, 1–8 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Coupland, G. Regulation of flowering by photoperiod in Arabidopsis. Plant Cell Environ. 20, 785–789 (1997).

    Article  Google Scholar 

  112. Amasino, R.M. Control of flowering time in plants. Curr. Opin. Genet. Dev. 6, 480–487 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Somers, D.E., Delvin, P.F. & Kay, S.A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Guo, H., Yang, H., Mockler, T.C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Koornneef, M., Hanhart, C.J. & van der Veen, J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Hicks, K.A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering3 mutant. Science 274, 790–792 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Schaffer, R. et al. LATE ELONGATED HYPOCOTYL, an Arabidopsis gene encoding a MYB transcription factor, regulates circadian rhythmicity and photoperiodic responses. Cell 93, 1219–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, Z. & Tobin, E.M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Fowler, S. et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679–4688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Park, D.H. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–1582 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Súarez-López, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001).

    Article  PubMed  Google Scholar 

  122. Bünning, E. Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Ber. Dtsch. Bot. Ges. 54, 590–607 (1936).

    Google Scholar 

  123. Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275–296 (1971).

    Article  Google Scholar 

  124. Rossi, M. et al. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. Sci. USA 95, 9750–9754 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ellis, J., Dodds, P. & Pryor, T. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. van der Biezen, E.A. & Jones, J.D. Plant disease–resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23, 454–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Mackey, D., Holt, B.F., Wiig, A. & Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Kruger, J. et al. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744–747 (2002).

    Article  PubMed  Google Scholar 

  130. Kim, Y.J., Lin, N.-C. & Martin, G.B. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109, 589–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Shao, F., Merritt, P.M., Bao, Z., Innes, R.W. & Dixon, J.E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Schneider, D.S. Plant immunity and film noir: what gumshoe detectives can teach us about plant-pathogen interactions. Cell 109, 537–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Century, K.S., Holub, E.B. & Staskawicz, B.J. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. USA 92, 6597–6601 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Parker, J.E. et al. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8, 2033–2046 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Aarts, N. et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene–mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 10306–10311 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xiao, S. et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291, 118–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Noël, L. et al. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell 11, 2099–2111 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Galton, F. Natural Inheritance (Macmillan, London, 1889).

    Book  Google Scholar 

  139. Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article  Google Scholar 

  140. Wright, S. The method of path coefficients. Ann. Math. Stat. 5, 161–215 (1934).

    Article  Google Scholar 

  141. Mather, K. Biometrical Genetics (Methuen, London, 1949).

    Google Scholar 

  142. Mackay, T.F. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Thoday, J.M. Location of polygenes. Nature 191, 368–370 (1961).

    Article  Google Scholar 

  144. Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Doerge, R.W. Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3, 43–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soope, W. & Peeters, T. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J. 6, 911–919 (1994).

    Article  CAS  Google Scholar 

  147. Lee, I., Michaels, S.D., Masshardt, A.S. & Amasino, R.M. The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis. Plant J. 6, 903–909 (1994).

    Article  CAS  Google Scholar 

  148. Doebley, J. & Stec, A. Genetic analysis of the morphological differences between maize and teosinte. Genetics 129, 285–295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Doebley, J. & Stec, A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134, 559–570 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Doebley, J., Stec, A. & Gustus, C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333–346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97, 4718–4723 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Frary, A. et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Takahashi, A., Tsaur, S-C., Coyne J.A. & Wu, C-I. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 3920–3925 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A.J., Raz, V. & Koornneef, M. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29, 435–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Maloof, J.N. et al. Natural variation in light sensitivity of Arabidopsis. Nat. Genet. 29, 441–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Alonso-Blanco, C. & Koornneef, M. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5, 22–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Yano, M., Kojima, S., Takahashi, Y., Lin, H. & Sasaki, T. Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127, 1425–1429 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Dudash, M.R. & Carr, D.E. Genetics underlying inbreeding depression in Mimulus with contrasting mating systems. Nature 393, 682–684 (1998).

    Article  CAS  Google Scholar 

  162. Li, Z.K. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158, 1737–1753 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Luo, L.J. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158, 1755–1771 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Harushima, Y., Nakagahra, M., Yano, M., Sasaki, T. & Kurata, N. Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160, 313–322 (2002).

    PubMed  PubMed Central  Google Scholar 

  165. Schemske, D.W. & Bradshaw, H.D., Jr. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96, 11910–11915 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hageman, R. Somatische konversion bei Lycopersicon esculentum Mill. Z. Vererbungslehre 89, 587–613 (1958).

    Google Scholar 

  167. Brink, R.A. Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol. 23, 379–391 (1958).

    Article  CAS  PubMed  Google Scholar 

  168. Kermicle, J.L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66, 69–85 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Mittelsten Scheid, O. & Paszkowski, J. Transcriptional gene silencing mutants. Plant Mol. Biol. 43, 235–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Morel, J.B. & Vaucheret, H. Post-transcriptional gene silencing mutants. Plant Mol. Biol. 43, 275–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Finnegan, E.J. & Kovac, K.A. Plant DNA methyltransferases. Plant Mol. Biol. 43, 189–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Martienssen, R.A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293, 1070–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Vongs, A., Kakutani, T., Martienssen, R.A. & Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Article  CAS  PubMed  Google Scholar 

  174. Mittelsten Scheid, O., Afsar, K. & Paszkowski, J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 95, 632–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Bartee, L., Malagnac, F. & Bender, J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev. 15, 1753–1758 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lindroth, A.M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Jackson, J.P., Lindroth, A.M., Cao, X. & Jacobsen, S.E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 21, 6842–6852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Russo, V.E.A., Martiessen, R.A. & Riggs, A.D. (eds.) Epigenetic Mechanisms of Gene Regulation (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1996).

    Google Scholar 

  180. Matzke, M. & Matzke, A. Special issue: epigenetics. Plant Mol. Biol. 43, 121–415 (2000).

    Article  Google Scholar 

  181. Riddihough, G. & Pennisi, E. The evolution of epigenetics. Science 293, 1063–1102 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Dunlap, J.C. & Wu, C.-T. (eds.). Homology effects. Adv. Genet. 46 (2002) (Academic Press, San Diego, 2002).

  183. Matzke, M., Matzke, A.J. & Kooter, J.M. RNA: guiding gene silencing. Science 293, 1080–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Hamilton AJ, Baulcombe DC . A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Baulcombe, D. RNA silencing. Curr. Biol. 12, 82–84 (2002).

    Article  Google Scholar 

  186. Palauqui J.C., Elmayan, T., Pollien, J.M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Voinnet O. & Baulcombe DC. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Jorgensen, R.A., Atkinson, R.G., Forster, R.L. & Lucas, W.J. An RNA-based information superhighway in plants. Science 279, 1486–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  189. Orlando, V. & Paro, R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev. 5, 174–179 (1995).

    Article  CAS  PubMed  Google Scholar 

  190. Pirrotta, V. Chromatin complexes regulating gene expression in Drosophila. Curr. Opin. Genet. Dev. 5, 466–472 (1995).

    Article  CAS  PubMed  Google Scholar 

  191. Brock, H.W. & van Lohuizen, M. The Polycomb group—no longer an exclusive club? Curr. Opin. Genet. Dev. 11, 175–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Köhler C. & Grossniklaus, U. Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr. Opin. Cell Biol. 14, 773–779 (2002).

    Article  PubMed  CAS  Google Scholar 

  193. Goodrich, J. et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386, 44–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. van Lohuizen, M. The trithorax-group and polycomb-group chromatin modifiers: implications for disease. Curr. Opin. Genet. Dev. 9, 355–361 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Grossniklaus, U., Vielle-Calzada J.-P, Hoeppner, M.A. & Gagliano, W.B. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280, 446–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  196. Ohad, N. et al. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11, 407–16 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Luo, M. et al. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96, 296–301 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Grossniklaus, U., Spillane, C., Page, D.R. & Köhler, C. Genomic imprinting and seed development: endosperm formation with and without sex. Curr. Opin. Plant Biol. 4, 21–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. Gendall, A.R., Levy, Y.Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525–535 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  201. Matzke, M.A., Aufsatz, W., Kanno, T, Mette, M.F. & Matzke, A.J. Homology-dependent gene silencing and host defense in plants. Adv. Genet. 46, 235–275 (2002).

    Article  CAS  PubMed  Google Scholar 

  202. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  203. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Kempin, S.A., Savidge, B. & Yanofsky, M.F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522–525 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Page, D.R. & Grossniklaus, U. The art and design of genetic screens: Arabidopsis thaliana. Nat. Rev. Genet. 3, 124–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Weigel, D. et al. Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Li, Y., Wu, Y.H., McAvoy, R. & Duan, H. Transgenics in crops. Biotechnol. Annu. Rev. 7, 239–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Ye, X. et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Potrykus I. Golden rice and beyond. Plant Physiol. 125, 1157–1161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Alvarez, J. & Smyth, D.R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 126, 2377–2386 (1999).

    CAS  PubMed  Google Scholar 

  213. Ng, M. & Yanofsky, M.F. Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell 13, 739–753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lohmann, J.U. et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell. 105, 793–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. Lamb, R.S., Hill, T.A., Tan, Q.K.-G. & Irish, V.F. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129, 2079–2086 (2002).

    CAS  PubMed  Google Scholar 

  216. Samach, A. et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613–1616 (2000).

    Article  CAS  PubMed  Google Scholar 

  217. Simpson, G.G. & Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Alonso-Blanco, C., El-Assal, S.E.-D., Coupland, G. & Koornneef, M. Analysis of natural variation at flowering time loci in the Landsberg erecta and Cape Verde Island ecotypes of Arabidopsis thaliana. Genetics 149, 749–764 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. Anandalakshmi R. et al. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95, 13079–13084 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Liscum, E. Phototropism: mechanisms and outcomes. In The Arabidopsis Book online <http://www.aspb.org/publications/arabidopsis/> (eds. Somerville, C.R. & Meyerowitz, E.M. (ASPB, Rockville, 2002). doi/10.1199/tab.0042.

    Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose research areas we could not cover. We thank J. Banks, C. Chapple, S. Curtis, R. Dudler, Y. Eshed, S. Goodwin, M. Green, M. Koornneef, C. Lagarias, S. Lolle, S. Scofield, D. Smyth and J.-R. Xu for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Grossniklaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruitt, R., Bowman, J. & Grossniklaus, U. Plant genetics: a decade of integration. Nat Genet 33 (Suppl 3), 294–304 (2003). https://doi.org/10.1038/ng1108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing