Proteomics: the first decade and beyond

Article metrics

Abstract

Proteomics is the systematic study of the many and diverse properties of proteins in a parallel manner with the aim of providing detailed descriptions of the structure, function and control of biological systems in health and disease. Advances in methods and technologies have catalyzed an expansion of the scope of biological studies from the reductionist biochemical analysis of single proteins to proteome-wide measurements. Proteomics and other complementary analysis methods are essential components of the emerging 'systems biology' approach that seeks to comprehensively describe biological systems through integration of diverse types of data and, in the future, to ultimately allow computational simulations of complex biological systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Representation of a eukaryotic cell.

Katie Ris

Figure 2: The current status of proteomic technologies.

Katie Ris

Figure 3: Quantitative protein analysis from the cell to the identified protein.

Katie Ris

Figure 4: Time line indicating the convergence of different technologies and resources into a proteomic process.

Katie Ris

Figure 5: Quantitative proteomics using ICAT reagents.

Katie Ris

Figure 6: Quantitative proteomics and informatics.

Katie Ris

References

  1. 1

    Aebersold, R., Hood, L.E. & Watts, J.D. Equipping scientists for the new biology. Nat. Biotechnol. 18, 359 (2000).

  2. 2

    Thornton, J. Structural genomics takes off. Trends Biochem. Sci. 26, 88–99 (2001).

  3. 3

    Aebersold, R. & Patterson, S.D. Current problems and technical solutions in protein biochemistry. In PROTEINS: Analysis & Design (ed. Angeletti, R.H.) 3–120 (Academic, San Diego, 1998).

  4. 4

    Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3–174 (1995).

  5. 5

    Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

  6. 6

    Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

  7. 7

    Anderson, N.L., Hofmann, J.P., Gemmell, A. & Taylor, J. Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem. 30, 2031–2036 (1984).

  8. 8

    Tarroux, P., Vincens, P. & Rabilloud, T. HERMeS: A second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part V: Data analysis. Electrophoresis 8, 187–199 (1987).

  9. 9

    Aebersold, R.H., Leavitt, J., Saavedra, R.A., Hood, L.E. & Kent, S.B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. 84, 6970–6974 (1987).

  10. 10

    Vandekerckhove, J., Bauw, G., Puype, M., Van Damme, J. & Van Montagu, M. Protein-blotting on polybrene-coated glass-fiber sheets. Eur. J. Biochem. 152, 9–19 (1985).

  11. 11

    Tempst, P., Link, A.J., Riviere, L.R., Fleming, M. & Elicone, C. Internal sequence analysis of proteins separated on polyacrylamide gels at the submicrogram level: improved methods, applications and gene cloning strategies. Electrophoresis 11, 537–553 (1990).

  12. 12

    Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

  13. 13

    Adams, M.D., Kerlavage, A.R., Fields, C. & Venter, J.C. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat. Genet. 4, 256–267 (1993).

  14. 14

    Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997).

  15. 15

    Bonaldo, M.F., Lennon, G. & Soares, M.B. Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6, 791–806 (1996).

  16. 16

    Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996).

  17. 17

    Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

  18. 18

    Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  19. 19

    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

  20. 20

    Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299–2301 (1988).

  21. 21

    Tanaka, K., Ido, Y., Akita, S., Yoshida, Y. & Yoshida, T. Detection of high mass molecules by laser desorption time-of-flight mass spectrometry. In Proc. 2nd Japan-China Joint Symp. Mass Spectrom. (eds. Matsuda, H. & Xiao-tian, L.) 185–188 (Osaka, Japan, 1987).

  22. 22

    Tanaka, K. et al. Protein and polymer analyses up to m/z 100,000 by laser ionization TOF-MS. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

  23. 23

    Henzel, W.J. et al. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015 (1993).

  24. 24

    Mann, M., Hojrup, P. & Roepstorff, P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22, 338–345 (1993).

  25. 25

    Pappin, D.J.C., Hojrup, P. & Bleasby, A.J. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332 (1993).

  26. 26

    James, P., Quadroni, M., Carafoli, E. & Gonnet, G. Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195, 58–64 (1993).

  27. 27

    Yates, J.R., III, Speicher, S., Griffin, P.R. & Hunkapiller, T. Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214, 397–408 (1993).

  28. 28

    Patterson, S.D. & Aebersold, R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 16, 1791–1814 (1995).

  29. 29

    Eng, J.K., McCormack, A.L. & Yates, J.R., III . An approach to correlate tandem mass spectral data pf peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

  30. 30

    Mann, M. Sequence database searching by mass spectrometric data. In Microcharacterization of Proteins (eds. Kellner, R., Lottspeich, F. & Meyer, H.E.) 223–245 (VCH, Weinheim, 1994).

  31. 31

    Gras, R. & Muller, M. Computational aspects of protein identification by mass spectrometry. Curr. Opin. Mol. Ther. 3, 526–532 (2001).

  32. 32

    Wilm, M.S. & Mann, M. Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int. J. Mass Spectrom. Ion Proc. 136, 167–180 (1994).

  33. 33

    Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass-spectrometry. Nature 379, 466–469 (1996).

  34. 34

    Scheele, G.A. Two-dimensional gel analysis of soluble proteins. Characterization of guinea pig exocrine pancreatic proteins. J. Biol. Chem. 250, 5375–5385 (1975).

  35. 35

    Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues: a novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243 (1975).

  36. 36

    O'Farrell, P.H. High resolution two-dimensional gel electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021 (1975).

  37. 37

    Anderson, N.G. & Anderson, L. The human protein index. Clin Chem. 28, 739–748 (1982).

  38. 38

    Garrels, J.I. The QUEST system for quantitative analysis of two-dimensional gels. J. Biol. Chem. 264, 5269–5282 (1989).

  39. 39

    Garrels, J.I. & Franza, B.R. Jr. Transformation-sensitive and growth-related changes of protein synthesis in REF52 cells. A two-dimensional gel analysis of SV40-, adenovirus-, and Kirsten murine sarcoma virus–transformed rat cells using the REF52 protein database. J. Biol. Chem. 264, 5299–5312 (1989).

  40. 40

    Garrels, J.I. & Franza, B.R., Jr. The REF52 protein database. Methods of database construction and analysis using the QUEST system and characterizations of protein patterns from proliferating and quiescent REF52 cells. J. Biol. Chem. 264, 5283–5298 (1989).

  41. 41

    Anderson, N.L., Matheson, A.D. & Steiner, S. Proteomics: applications in basic and applied biology. Curr. Opin. Biotechnol. 11, 408–412 (2000).

  42. 42

    Wilkins, M.R. et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotech. Gen. Eng. Rev. 13, 19–50 (1995).

  43. 43

    Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

  44. 44

    Lai, R. et al. Prognostic value of plasma interleukin-6 levels in patients with chronic lymphocytic leukemia. Cancer 95, 1071–1075 (2002).

  45. 45

    Ritchie, R.F., Palomaki, G.E., Neveux, L.M. & Navolotskaia, O. Reference distributions for the negative acute-phase proteins, albumin, transferrin, and transthyretin: a comparison of a large cohort to the world's literature. J. Clin. Lab. Anal. 13, 280–286 (1999).

  46. 46

    Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97, 9390–9395 (2000).

  47. 47

    Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21, 1104–1115 (2000).

  48. 48

    Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. I. Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20, 575–600 (1999).

  49. 49

    Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2, 3–10 (2002).

  50. 50

    Herbert, B. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 20, 660–663 (1999).

  51. 51

    Gorg, A. et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053 (2000).

  52. 52

    Unlu, M., Morgan, M.E. & Minden, J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077 (1997).

  53. 53

    Rabilloud, T., Strub, J.M., Luche, S., van Dorsselaer, A. & Lunardi, J. A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1, 699–704 (2001).

  54. 54

    Appella, E., Padlan, E.A. & Hunt, D.F. Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules. EXS 73, 105–119 (1995).

  55. 55

    Hunt, D.F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992).

  56. 56

    Henderson, R.A. et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266 (1992).

  57. 57

    Hunt, D.F. et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256, 1817–1820 (1992).

  58. 58

    Yates, J.R., III, McCormack, A.L., Schieltz, D., Carmack, E. & Link, A. Direct analysis of protein mixtures by tandem mass spectrometry. J. Prot. Chem. 16, 495–497 (1997).

  59. 59

    Spahr, C.S. et al. Simplification of complex peptide mixtures for proteomic analysis: reversible biotinylation of cysteinyl peptides. Electrophoresis 21, 1635–1650 (2000).

  60. 60

    Wolters, D.A., Washburn, M.P. & Yates, J.R. III . An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690 (2001).

  61. 61

    Link, A.J., Carmack, E. & Yates, J.R. III . A strategy for the identification of proteins localized to subcellular spaces: Application to E-coli periplasmic proteins. Int. J. Mass Spectrom. Ion Proc. 160, 303–316 (1997).

  62. 62

    Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).

  63. 63

    Mintz, P.J., Patterson, S.D., Neuwald, A.F., Spahr, C.S. & Spector, D.L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 18, 4308–4320 (1999).

  64. 64

    Patterson, S.D. et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Diff. 7, 137–144 (2000).

  65. 65

    Spahr, C.S. et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry I. Profiling an unfractionated tryptic digest. Proteomics 1, 93–107 (2001).

  66. 66

    Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J. & Weil, P.A. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22, 4723–4738 (2002).

  67. 67

    Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

  68. 68

    Han, D.K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

  69. 69

    Simpson, R.J. et al. Proteomic analysis of the human colon carcinoma cell line (LIM 1215): Development of a membrane protein database. Electrophoresis 21, 1707–1732 (2000).

  70. 70

    Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

  71. 71

    Washburn, M.P., Wolters, D. & Yates, J.R.r Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

  72. 72

    Patterson, S.D. Using MS fragment-ion data to identify proteins from large sequence databases. In Proteomics, Integrating Protein-based Tools and Applications for Drug Discovery (ed. Savage, L.M.) 127–135 (International Business Communications, Southborough, 1998).

  73. 73

    Nuwaysir, L.M. & Stults, J.T. Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography. J. Am. Soc. Mass Spectrom. 4, 662–669 (1993).

  74. 74

    Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

  75. 75

    Hayes, B.K., Greis, K.D. & Hart, G.W. Specific isolation of O-Linked N-acetylglucosamine glycopeptides from complex mixtures. Anal. Biochem. 228, 115–122 (1995).

  76. 76

    Greis, K.D. et al. Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by β-elimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38–49 (1996).

  77. 77

    Davis, M.T. et al. Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. J. Chromatogr. B 752, 281–291 (2001).

  78. 78

    Gygi, S.P., Rist, B., Griffin, T.J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res. 1, 47–54 (2002).

  79. 79

    Smith, R.D. et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2, 513–523 (2002).

  80. 80

    De Leenheer, A.P. & Thienpont, L.M. Application of isotope dilution-mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spectrom. Rev. 11, 249–307 (1992).

  81. 81

    Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

  82. 82

    Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).

  83. 83

    Cagney, G. & Emili, A. De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol. 20, 163–170 (2002).

  84. 84

    Zhou, H., Ranish, J.A., Watts, J.D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol. 20, 512–515 (2002).

  85. 85

    Mirgorodskaya, O.A. et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom. 14, 1226–1232 (2000).

  86. 86

    Yao, X., Freas, A., Ramirez, J., Demirev, P.A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).

  87. 87

    Uttenweiler-Joseph, S., Neubauer, G., Christoforidis, S., Zerial, M. & Wilm, M. Automated de novo sequencing of proteins using the differential scanning technique. Proteomics 1, 668–682 (2001).

  88. 88

    Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).

  89. 89

    Conrads, T.P. et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem. 73, 2132–2139 (2001).

  90. 90

    Smith, R.D. et al. Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Electrophoresis 22, 1652–1668 (2001).

  91. 91

    Washburn, M.P., Ulaszek, R., Deciu, C., Schieltz, D.M. & Yates, J.R. III . Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal. Chem. 74, 1650–1657 (2002).

  92. 92

    Siebert, R., Rosenwald, A., Staudt, L.M. & Morris, S.W. Molecular features of B-cell lymphoma. Curr. Opin. Oncol. 13, 316–324 (2001).

  93. 93

    Bangur, C.S. et al. Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene 21, 3814–3825 (2002).

  94. 94

    van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

  95. 95

    Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

  96. 96

    Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

  97. 97

    Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

  98. 98

    Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

  99. 99

    Alter, O., Brown, P.O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97, 10101–10106 (2000).

  100. 100

    Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

  101. 101

    Anderson, L. & Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537 (1997).

  102. 102

    Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels, J.I. A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357–7368 (1999).

  103. 103

    Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002).

  104. 104

    Griffin, T.J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).

  105. 105

    Adam, G.C., Cravatt, B.F. & Sorensen, E.J. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol. 8, 81–95 (2001).

  106. 106

    Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20, 805–809 (2002).

  107. 107

    Greenbaum, D., Medzihradszky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

  108. 108

    Lopez-Otin, C. & Overall, C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3, 509–519 (2002).

  109. 109

    Bogyo, M., Shin, S., McMaster, J.S. & Ploegh, H.L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307–320 (1998).

  110. 110

    Cravatt, B.F. & Sorensen, E.J. Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol. 4, 663–668 (2000).

  111. 111

    Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

  112. 112

    Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–4015 (2001).

  113. 113

    Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

  114. 114

    Withers, S.G. & Aebersold, R. Approaches to labeling and identification of active-site residues in glycosidases. Protein Sci. 4, 361–372 (1995).

  115. 115

    Haystead, C.M., Gregory, P., Sturgill, T.W. & Haystead, T.A. γ-Phosphate-linked ATP-sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinase. Eur. J. Biochem. 214, 459–467 (1993).

  116. 116

    Turecek, F. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for quantitative protein analysis. J. Mass Spectrom. 37, 1–14 (2002).

  117. 117

    Kumazaki, T., Terasawa, K. & Ishii, S. Affinity chromatography on immobilized anhydrotrypsin: general utility for selective isolation of C-terminal peptides from protease digests of proteins. J. Biochem. 102, 1539–1546 (1987).

  118. 118

    Fricker, L.D. et al. Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J. Neurosci. 20, 639–648 (2000).

  119. 119

    Bures, E.J. et al. Identification of incompletely processed potential carboxypeptidase E substrates from CpEfat/CpEfat mice. Proteomics 1, 79–92 (2001).

  120. 120

    Flint, A.J., Tiganis, T., Barford, D. & Tonks, N.K. Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94, 1680–1685 (1997).

  121. 121

    Zhang, S.H., Liu, J., Kobayashi, R. & Tonks, N.K. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J. Biol. Chem. 274, 17806–17812 (1999).

  122. 122

    Belew, M. & Porath, J. Immobilized metal ion affinity chromatography. Effect of solute structure, ligand density and salt concentration on the retention of peptides. J. Chromatogr. 516, 333–354 (1990).

  123. 123

    Posewitz, M.C. & Tempst, P. Immobilized gallium(iii) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892 (1999).

  124. 124

    Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

  125. 125

    Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem. 73, 2578–2586 (2001).

  126. 126

    Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

  127. 127

    Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).

  128. 128

    Deshaies, R.J. et al. Charting the protein complexome in yeast by mass spectrometry. Mol. Cell. Proteomics 1, 3–10 (2002).

  129. 129

    Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

  130. 130

    Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

  131. 131

    Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

  132. 132

    von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).

  133. 133

    Ranish, J.A. et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. (in the press).

  134. 134

    Pease, A.C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026 (1994).

  135. 135

    Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

  136. 136

    van Berkum, N.L. & Holstege, F.C. DNA microarrays: raising the profile. Curr. Opin. Biotechnol. 12, 48–52 (2001).

  137. 137

    Nadon, R. & Shoemaker, J. Statistical issues with microarrays: processing and analysis. Trends Genet. 18, 265–271 (2002).

  138. 138

    Haab, B.B., Dunham, M.J. & Brown, P.O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, RESEARCH0004 (2001).

  139. 139

    Jenkins, R.E. & Pennington, S.R. Arrays for protein expression profiling: towards a viable alternative to two-dimensional gel electrophoresis? Proteomics 1, 13–29 (2001).

  140. 140

    Zhou, H., Roy, S., Schulman, H. & Natan, M.J. Solution and chip arrays in protein profiling. Trends Biotechnol. 19, S34–S39 (2001).

  141. 141

    McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

  142. 142

    Tramontano, A. et al. The making of the minibody: an engineered β-protein for the display of conformationally constrained peptides. J. Mol. Recognit. 7, 9–24 (1994).

  143. 143

    Martin, F. et al. Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed β-protein IL-6 antagonist. J. Mol. Biol. 255, 86–97 (1996).

  144. 144

    Koivunen, E., Wang, B. & Ruoslahti, E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology 13, 265–270 (1995).

  145. 145

    McConnell, S.J. & Hoess, R.H. Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250, 460–470 (1995).

  146. 146

    Nord, K., Nilsson, J., Nilsson, B., Uhlen, M. & Nygren, P.A. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng. 8, 601–608 (1995).

  147. 147

    Choo, Y. & Klug, A. Designing DNA-binding proteins on the surface of filamentous phage. Curr. Opin. Biotechnol. 6, 431–436 (1995).

  148. 148

    Brody, E.N. et al. The use of aptamers in large arrays for molecular diagnostics. Mol. Diagn. 4, 381–388 (1999).

  149. 149

    Holt, L.J., Enever, C., de Wildt, R.M. & Tomlinson, I.M. The use of recombinant antibodies in proteomics. Curr. Opin. Biotechnol. 11, 445–449 (2000).

  150. 150

    Eklund, M., Axelsson, L., Uhlen, M. & Nygren, P.A. Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins 48, 454–462 (2002).

  151. 151

    Mitchell, P. A perspective on protein microarrays. Nat. Biotechnol. 20, 225–229 (2002).

  152. 152

    Cahill, D.J. Protein and antibody arrays and their medical applications. J. Immunol. Methods 250, 81–91 (2001).

  153. 153

    Walter, G., Bussow, K., Cahill, D., Lueking, A. & Lehrach, H. Protein arrays for gene expression and molecular interaction screening. Curr. Opin. Microbiol. 3, 298–302 (2000).

  154. 154

    Schweitzer, B. et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 20, 359–365 (2002).

  155. 155

    Houseman, B.T. & Mrksich, M. Towards quantitative assays with peptide chips: a surface engineering approach. Trends Biotechnol. 20, 279–281 (2002).

  156. 156

    Martzen, M.R. et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 286, 1153–1155 (1999).

  157. 157

    Houseman, B.T., Huh, J.H., Kron, S.J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274 (2002).

  158. 158

    Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289 (2000).

  159. 159

    Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

  160. 160

    Krylov, A.S., Zasedateleva, O.A., Prokopenko, D.V., Rouviere-Yaniv, J. & Mirzabekov, A.D. Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. Nucleic Acids Res. 29, 2654–2660 (2001).

  161. 161

    MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

  162. 162

    Diehn, M., Eisen, M.B., Botstein, D. & Brown, P.O. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat. Genet. 25, 58–62 (2000).

  163. 163

    Zong, Q., Schummer, M., Hood, L. & Morris, D.R. Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc. Natl. Acad. Sci. USA 96, 10632–10636 (1999).

  164. 164

    Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

  165. 165

    Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

  166. 166

    Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

  167. 167

    Tucker, C.L., Gera, J.F. & Uetz, P. Towards an understanding of complex protein networks. Trends Cell Biol. 11, 102–106 (2001).

  168. 168

    Bartel, P.L., Roecklein, J.A., SenGupta, D. & Fields, S. A protein linkage map of Escherichia coli bacteriophage T7. Nat. Genet. 12, 72–77 (1996).

  169. 169

    McCraith, S., Holtzman, T., Moss, B. & Fields, S. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 4879–4884 (2000).

  170. 170

    Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

  171. 171

    Ito, T. et al. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97, 1143–1147 (2000).

  172. 172

    Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

  173. 173

    Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

  174. 174

    Walhout, A.J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

  175. 175

    Davy, A. et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).

  176. 176

    Zhang, B., Kraemer, B., SenGupta, D., Fields, S. & Wickens, M. Yeast three-hybrid system to detect and analyze RNA-protein interactions. Methods Enzymol. 318, 399–419 (2000).

  177. 177

    Tucker, C.L. & Fields, S. A yeast sensor of ligand binding. Nat. Biotechnol. 19, 1042–1046 (2001).

  178. 178

    Heim, R., Prasher, D.C. & Tsien, R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

  179. 179

    Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

  180. 180

    Tsien, R.Y. & Miyawaki, A. Seeing the machinery of live cells. Science 280, 1954–1955 (1998).

  181. 181

    Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719 (2002).

  182. 182

    Garrels, J.I. YPD—a database for the proteins of Saccharomyces cerevisiae. Nucleic Acids Res. 24, 46–49 (1996).

  183. 183

    Cherry, J.M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998).

  184. 184

    Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002).

  185. 185

    Guina, T. et al. Quantitative proteomic analysis of Pseudomonas aeruginosa indicates synthesis of quinolone signal in adaptation to cystic fibrosis airways. Proc. Natl. Acad. Sci. USA (in the press).

  186. 186

    Ewing, B., Hillier, L., Wendl, M.C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

  187. 187

    Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

  188. 188

    Keller, A. et al. Experimental protein mixture for validating tandem mass spectral analysis. Omics 6, 207–212 (2002).

  189. 189

    Caprioli, R.M., Farmer, T.B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

  190. 190

    Stoeckli, M., Chaurand, P., Hallahan, D.E. & Caprioli, R.M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7, 493–496 (2001).

  191. 191

    Collings, B.A., Sudakov, M. & Londry, F.A. Resonance shifts in the excitation of the n = 0, K = 1 to 6 quadrupolar resonances for ions confined in a linear ion trap. J. Am. Soc. Mass Spectrom. 13, 577–586 (2002).

  192. 192

    Medzihradszky, K.F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 72, 552–558 (2000).

  193. 193

    Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

  194. 194

    Ullrich, B., Ushkaryov, Y.A. & Sudhof, T.C. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14, 497–507 (1995).

  195. 195

    Petricoin, E.F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

  196. 196

    Adam, B.L. et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609–3614 (2002).

  197. 197

    Alon, U., Surette, M.G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).

  198. 198

    Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

Download references

Acknowledgements

We would like to thank L. Feltz for administrative assistance and J. Watts for review of the manuscript.

Author information

Correspondence to Scott D. Patterson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patterson, S., Aebersold, R. Proteomics: the first decade and beyond. Nat Genet 33, 311–323 (2003) doi:10.1038/ng1106

Download citation

Further reading