Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The transformation of the model organism: a decade of developmental genetics

Abstract

The past decade has seen the development of powerful techniques to dissect the molecular processes that regulate development. New tools have been used to reveal the basis of cell polarity, morphogen gradients and regulation of signaling in developing animals. Cell biology and developmental biology have become closely intertwined, and many genes that had been thought of as regulators of general cell biological (housekeeping) functions have been shown to act as specific developmental regulators. Vertebrate developmental genetics is now flourishing, with forward and reverse genetics in both zebrafish and the mouse providing new dimensions to our understanding of development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cell and tissue polarity revealed by GFP fusions.
Figure 2: Stable activation of gene expression using the flp-out technique.
Figure 3: Induction of labeled clones of mutant cells using FRT-mediated somatic recombination.
Figure 4: Negative feedback loops restrict the spatial and temporal range of signaling molecules.
Figure 5: Covalent modification is one mechanism used to modulate the activity of proteins required for intercellular signaling.
Figure 6: Whole-mount in situ hybridization makes it easier to visualize the anatomy of the mouse embryo.
Figure 7: Identification of mutations in zebrafish.
Figure 8: Two strategies for forward genetics in the mouse identify new genes important in development.

References

  1. Wolpert, L. Do we understand development? Science 266, 571–572 (1994).

    CAS  Article  PubMed  Google Scholar 

  2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    CAS  Article  PubMed  Google Scholar 

  3. Guo, S. & Kemphues, K.J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 (1996).

    CAS  Article  PubMed  Google Scholar 

  4. Reese, K.J., Dunn, M.A., Waddle, J.A. & Seydoux, G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell. 6, 445–455 (2000).

    CAS  Article  PubMed  Google Scholar 

  5. Bilder, D. Cell polarity: squaring the circle. Curr. Biol. 11, R132–R135. (2001).

    CAS  Article  PubMed  Google Scholar 

  6. Lu, B., Ackerman, L., Jan, L.Y. & Jan, Y.N. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell 4, 883–891 (1999).

    CAS  Article  PubMed  Google Scholar 

  7. Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 152, 1183–1196 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Strutt, D.I. Asymmetric localization of Frizzled and the establishment of cell polarity in the Drosophila wing. Mol. Cell 7, 367–375 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. Tree, D.R., Shulman, J.M., Rousset, R., Scott, M.P., Gubb, D. & Axelrod, J.D. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109, 371–381 (2002).

    CAS  Article  PubMed  Google Scholar 

  10. Struhl, G. & Basler, K. Organizing activity of wingless protein in Drosophila. Cell 72, 527–540 (1993).

    CAS  Article  PubMed  Google Scholar 

  11. Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    CAS  Article  PubMed  Google Scholar 

  12. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  13. Fischer, J.A, Giniger, E., Maniatis, T. & Ptashne, M. GAL4 activates transcription in Drosophila. Nature 332, 853–856 (1988).

    CAS  Article  PubMed  Google Scholar 

  14. Bellen, H.J., O'Kane, C.J., Wilson, C., Grossniklaus, U., Pearson, R.K. & Gehring, W.J. P-element–mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300 (1989).

    CAS  Article  PubMed  Google Scholar 

  15. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995).

    CAS  PubMed  Google Scholar 

  16. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    CAS  Article  PubMed  Google Scholar 

  17. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    CAS  Article  PubMed  Google Scholar 

  18. Strigini, M. & Cohen, S.M. Wingless gradient formation in the Drosophila wing. Curr. Biol. 10, 293–300 (2000).

    CAS  Article  PubMed  Google Scholar 

  19. Lander, A.D., Nie, Q. & Wan, F.Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002).

    CAS  Article  PubMed  Google Scholar 

  20. Xu, T. & Rubin, G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  21. Pan, D. & Rubin, G.M. cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80, 543–552 (1995).

    CAS  Article  PubMed  Google Scholar 

  22. Jiang, J. & Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998).

    CAS  Article  PubMed  Google Scholar 

  23. Simon, M.A., Bowtell, D.D., Dodson, G.S., Laverty, T.R. & Rubin, G.M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the Sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    CAS  Article  PubMed  Google Scholar 

  24. Karim, F.D., Chang, H.C., Therrien, M., Wassarman, D.A., Laverty, T. & Rubin, G.M. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315–329 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    CAS  Article  PubMed  Google Scholar 

  26. Freeman, M. Feedback control of intercellular signalling in development. Nature 408, 313–319 (2000).

    CAS  Article  PubMed  Google Scholar 

  27. Gerlitz, O. & Basler, K. Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev. 16, 1055–1059 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Ye, Y. & Fortini, M.E. Proteolysis and developmental signal transduction. Semin. Cell Dev. Biol. 11, 211–221 (2000).

    CAS  Article  PubMed  Google Scholar 

  29. Lai, E.C. Protein degradation: four E3s for the Notch pathway. Curr. Biol. 12, R74–R78 (2002).

    CAS  Article  PubMed  Google Scholar 

  30. Moustakas, A., Souchelnytskyi, S. & Heldin, C.H. Related Smad regulation in TGF-β signal transduction. J. Cell. Sci. 114, 4359–4369 (2001).

    CAS  PubMed  Google Scholar 

  31. Maniatis, T. A ubiquitin ligase complex essential for the NF-κB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13, 505–510 (1999).

    CAS  Article  PubMed  Google Scholar 

  32. Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J.P. Regulated endocytic routing modulates Wingless signaling in Drosophila embryos. Cell 105, 613–624 (2001).

    CAS  Article  PubMed  Google Scholar 

  33. Lee, J.R., Urban, S., Garvey, C.F. & Freeman, M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107, 161–171 (2001).

    CAS  Article  PubMed  Google Scholar 

  34. Sen, J., Goltz, J.S., Konsolaki, M., Schüpbach, T. & Stein, D. Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe. Development 127, 5541–5550 (2000).

    CAS  PubMed  Google Scholar 

  35. Sen, J., Goltz, J.S., Stevens, L. & Stein, D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal–ventral polarity. Cell 95, 471–481 (1998).

    CAS  Article  PubMed  Google Scholar 

  36. Tanaka, K., Kitagawa, Y. & Kadowaki, T. Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of Wingless in the endoplasmic reticulum. J. Biol. Chem. 277, 12816–12823 (2002).

    CAS  Article  PubMed  Google Scholar 

  37. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified Hedgehog from signaling cells. Cell 99, 803–815 (1999).

    CAS  Article  PubMed  Google Scholar 

  38. Keleman, K. et al. Comm sorts Robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002).

    CAS  Article  PubMed  Google Scholar 

  39. Justice, N.J. & Jan, Y.N. Variations on the Notch pathway in neural development. Curr. Opin. Neurobiol. 12, 64–70 (2002).

    CAS  Article  PubMed  Google Scholar 

  40. Moloney, D.J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    CAS  Article  PubMed  Google Scholar 

  41. Sisson, J.C., Ho, K.S., Suyama, K. & Scott, M.P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245 (1997).

    CAS  Article  PubMed  Google Scholar 

  42. Eggenschwiler, J.T., Espinoza, E. & Anderson, K.V. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198 (2001).

    CAS  Article  PubMed  Google Scholar 

  43. Kmita, M., Fraudeau, N., Herault, Y. & Duboule, D. Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature 420, 145–150 (2002).

    CAS  Article  PubMed  Google Scholar 

  44. Fuchs, E., Merrill, B.J., Jamora, C. & DasGupta, R. At the roots of a never-ending cycle. Dev. Cell. 1, 13–25 (2001).

    CAS  Article  PubMed  Google Scholar 

  45. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    CAS  Article  PubMed  Google Scholar 

  46. Rosen, B. & Beddington, R.S. Whole-mount in situ hybridization in the mouse embryo: gene expression in three dimensions. Trends Genet. 9, 162–167 (1993).

    CAS  Article  PubMed  Google Scholar 

  47. Beddington, R.S. Induction of a second neural axis by the mouse node. Development 12, 613–620 (1994).

    Google Scholar 

  48. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    CAS  Article  PubMed  Google Scholar 

  49. Heasman, J. Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214 (2002).

    CAS  Article  PubMed  Google Scholar 

  50. Calegari, F., Haubensak, W., Yang, D., Huttner, W.B. & Buchholz, F. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc. Natl. Acad. Sci. USA 99, 14236–14240 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Mellitzer, G., Hallonet, M., Chen, L. & Ang, S.L. Spatial and temporal 'knock down' of gene expression by electroporation of double-stranded RNA and morpholinos into early postimplantation mouse embryos. Mech. Dev. 118, 57–63 (2002).

    CAS  Article  PubMed  Google Scholar 

  52. Zhang, J., Talbot, W.S. & Schier, A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    CAS  Article  PubMed  Google Scholar 

  53. Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D.Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195 (2000).

    CAS  Article  PubMed  Google Scholar 

  54. Walsh, E.C. & Stainier, D.Y. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001).

    CAS  Article  PubMed  Google Scholar 

  55. Cordes, S.P. & Barsh, G.S. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    CAS  Article  PubMed  Google Scholar 

  56. Shumacher, A., Faust, C. & Magnuson, T. Positional cloning of a global regulator of anterior–posterior patterning in mice. Nature 383, 250–253 (1996).

    CAS  Article  PubMed  Google Scholar 

  57. Kibar, Z, Voganm K.J., Groulx, N., Justice, M.J., Underhill, D.A. & Gros, P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat. Genet. 28, 251–255 (2001).

    CAS  Article  PubMed  Google Scholar 

  58. Hentges, K.E. et al. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc. Natl. Acad. Sci. USA 98, 13796–13801 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Caspary, T. et al. Mouse Dispatched homolog1 is required for long-range but not juxtacrine Hh signaling. Curr. Biol. 12, 1628–1632 (2002).

    CAS  Article  PubMed  Google Scholar 

  60. Leighton, P.A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).

    CAS  Article  PubMed  Google Scholar 

  61. Stanford, W.L., Cohn, J.B. & Cordes, S.P. Gene-trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768 (2001).

    CAS  Article  PubMed  Google Scholar 

  62. Wallis, D. & Muenke, M. Mutations in holoprosencephaly. Hum. Mutat. 16, 99–108 (2000).

    CAS  Article  PubMed  Google Scholar 

  63. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    CAS  Article  PubMed  Google Scholar 

  64. Goodrich, L.V. & Scott, M.P. (1998) Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257 (1998).

    CAS  Article  PubMed  Google Scholar 

  65. Anderson, K.V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13–19 (2000).

    CAS  Article  PubMed  Google Scholar 

  66. Selkoe, D.J. Presenilin, Notch, and the genesis and treatment of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 98, 11039–11041 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Wolkow, C.A., Kimura, K.D., Lee, M.S. & Ruvkun, G. Regulation of C. elegans life-span by insulin-like signaling in the nervous system. Science 290, 147–150 (2000).

    CAS  Article  PubMed  Google Scholar 

  68. Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. & Ahringer, J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    CAS  Article  PubMed  Google Scholar 

  69. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    CAS  Article  PubMed  Google Scholar 

  70. Furlong, E.E., Andersen, E.C., Null, B., White, K.P. & Scott, M.P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

    CAS  Article  PubMed  Google Scholar 

  71. Hughes, C.L. & Kaufman, T.C. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127, 3683–3694 (2000).

    CAS  PubMed  Google Scholar 

  72. Plasterk, R.H., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332 (1999).

    CAS  Article  PubMed  Google Scholar 

  73. Adler, P.N. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535 (2002).

    CAS  Article  PubMed  Google Scholar 

  74. Johnson, R.L., Grenier, J.K. & Scott, M.P. Patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161–4170 (1995).

    CAS  PubMed  Google Scholar 

  75. Wilson, V., Rashbass, P. and Beddington, R.S.P. Chimeric analysis of T (Brachyury) gene function. Development 117, 1321–1331 (1993).

    CAS  PubMed  Google Scholar 

  76. Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left–right asymmetry. Nat. Rev. Genet. 3, 103–113 (2002).

    CAS  Article  PubMed  Google Scholar 

  77. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. An LDL-receptor–related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    CAS  Article  PubMed  Google Scholar 

  78. Kasarskis, A., Manova, K. & Anderson, K.V. A phenotype-based screen for ENU-induced embryonic lethal mutations in the mouse. Proc. Natl. Acad. Sci. USA 95, 7485–7490 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn V. Anderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderson, K., Ingham, P. The transformation of the model organism: a decade of developmental genetics. Nat Genet 33 (Suppl 3), 285–293 (2003). https://doi.org/10.1038/ng1105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing