Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex

Abstract

Proliferating cell nuclear antigen (PCNA) is required for mismatch repair (MMR) and has been shown to interact with complexes containing Msh2p or MLH1 (refs 14). PCNA has been implicated to act in MMR before and during the DNA synthesis step, although the biochemical basis for the role of PCNA early in MMR is unclear1,3,5. Here we observe an interaction between PCNA and Msh2p-Msh6p mediated by a specific PCNA-binding site present in Msh6p. An msh6 mutation that eliminated the PCNA-binding site caused a mutator phenotype and a defect in the interaction with PCNA. The association of PCNA with Msh2p-Msh6p stimulated the preferential binding of Msh2p-Msh6p to DNA containing mispaired bases. Mutant PCNA proteins encoded by MMR-defective pol30 alleles were defective for interaction with Msh2p-Msh6p and for stimulation of mispair binding by Msh2p-Msh6p. Our results suggest that PCNA functions directly in mispair recognition and that mispair recognition requires a higher-order complex containing proteins in addition to Msh2p-Msh6p.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a PCNA-binding site in MMR proteins.
Figure 2: Physical interaction between Msh2p-Msh6p and PCNA.
Figure 3: Effect of PCNA on Msh2p-Msh6p binding to mispairs.

Similar content being viewed by others

References

  1. Gu, L., Hong, Y., McCulloch, S., Watanabe, H. & Li, G.M. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 26, 1173–1178 ( 1998).

    Article  CAS  Google Scholar 

  2. Johnson, R.E. et al. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 271, 27987–27990 (1996).

    Article  CAS  Google Scholar 

  3. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65– 73 (1996).

    Article  CAS  Google Scholar 

  4. Hughes, P., Tratner, I., Ducoux, M., Piard, K. & Baldacci, G. Isolation and identification of the third subunit of mammalian DNA polymerase delta by PCNA-affinity chromatography of mouse FM3A cell extracts. Nucleic Acids Res. 27, 2108–2114 (1999).

    Article  CAS  Google Scholar 

  5. Umar, A. & Kunkel, T.A. DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur. J. Biochem. 238, 297–307 ( 1996).

    Article  CAS  Google Scholar 

  6. Warbrick, E. PCNA binding through a conserved motif. Bioessays 20 , 195–199 (1998).

    Article  CAS  Google Scholar 

  7. Chen, C., Merrill, B.J., Lau, P.J., Holm, C. & Kolodner, R.D. Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Mol. Cell. Biol. 19, 7801–7815 (1999).

    Article  CAS  Google Scholar 

  8. Amin, N.S. & Holm, C. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144, 479–493 (1996).

    CAS  Google Scholar 

  9. Ayyagari, R., Impellizzeri, K.J., Yoder, B.L., Gary, S.L. & Burgers, P.M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15 , 4420–4429 (1995).

    Article  CAS  Google Scholar 

  10. Kokoska, R.J., Stefanovic, L., Buermeyer, A.B., Liskay, R.M. & Petes, T.D. A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences. Genetics 151, 511– 519 (1999).

    CAS  Google Scholar 

  11. Marsischky, G.T. & Kolodner, R.D. Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. J. Biol. Chem. 274, 26668–26682 (1999).

    Article  CAS  Google Scholar 

  12. Gradia, S., Acharya, S. & Fishel, R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 91, 995 –1005 (1997).

    Article  CAS  Google Scholar 

  13. Alani, E., Sokolsky, T., Studamire, B., Miret, J.J. & Lahue, R.S. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol. Cell. Biol. 17, 2436–2447 (1997).

    Article  CAS  Google Scholar 

  14. Blackwell, L.J., Martik, D., Bjornson, K.P., Bjornson, E.S. & Modrich, P. Nucleotide-promoted release of hMutSα from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J. Biol. Chem. 273, 32055–32062 (1998).

    Article  CAS  Google Scholar 

  15. Iaccarino, I., Marra, G., Palombo, F. & Jiricny, J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα. EMBO J. 17, 2677–2686 (1998).

    Article  CAS  Google Scholar 

  16. Kolodner, R.D. & Marsischky, G.T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    Article  CAS  Google Scholar 

  17. Prolla, T.A., Pang, Q., Alani, E., Kolodner, R.D. & Liskay, R.M. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 265, 1091–1093 (1994).

    Article  CAS  Google Scholar 

  18. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr. Biol. 7, 790–793 ( 1997).

    Article  CAS  Google Scholar 

  19. Drotschmann, K., Aronshtam, A., Fritz, H.J. & Marinus, M.G. The Escherichia coli MutL protein stimulates binding of Vsr and MutS to heteroduplex DNA. Nucleic Acids Res. 26, 948– 953 (1998).

    Article  CAS  Google Scholar 

  20. Spampinato, C. & Modrich, P. The MutL ATPase is required for mismatch repair. J. Biol. Chem. 275 , 9863–9869 (2000).

    Article  CAS  Google Scholar 

  21. Rose, M., Winston, F. & Hieter, P. Methods in Yeast Genetics: A Laboratory Course (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1990).

    Google Scholar 

  22. Lea, D.E. & Coulson, C.A. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–268 (1949).

    Article  CAS  Google Scholar 

  23. Flores-Rozas, H. & Kolodner, R.D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl Acad. Sci. USA 95, 12404–12409 (1998).

    Article  CAS  Google Scholar 

  24. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407– 420 (1996).

    Article  CAS  Google Scholar 

  25. Vallejo, A.N., Pogulis, R.J. & Pease, L.R. Mutagenesis and synthesis of novel recombination genes using PCR. in PCR Primer: A Laboratory Manual (eds Dieffenbach, C.W. & Dveksler, G.S.) 603–612 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1995).

    Google Scholar 

  26. Alani, E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol. Cell. Biol. 16, 5604–5615 (1996).

    Article  CAS  Google Scholar 

  27. Fien, K. & Stillman, B. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol. Cell. Biol. 12, 155–163 (1992).

    Article  CAS  Google Scholar 

  28. Sia, E.A., Kokoska, R.J., Dominska, M., Greenwell, P. & Petes, T.D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol. Cell. Biol. 17, 2851–2858 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N.S. Amin, R. Das Gupta, P. Lau, T. Nakagawa and K. Schmidt for helpful discussions and comments on the manuscript, and J. Weger and J. Green for DNA sequencing. This work was supported by National Institutes of Health grant GM50006 to R.D.K. and a fellowship from the Jane Coffin Childs Memorial Fund to H.F.-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Kolodner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Rozas, H., Clark, D. & Kolodner, R. Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 26, 375–378 (2000). https://doi.org/10.1038/81708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing