Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice

Abstract

Inactivation of the mouse homologue of the Huntington disease gene (Hdh) results in early embryonic lethality. To investigate the normal function of Hdh in the adult and to evaluate current models for Huntington disease (HD), we have used the Cre/loxP site-specific recombination strategy to inactivate Hdh expression in the forebrain and testis, resulting in a progressive degenerative neuronal phenotype and sterility. On the basis of these results, we propose that huntingtin is required for neuronal function and survival in the brain and that a loss-of-function mechanism may contribute to HD pathogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cre/loxP–mediated inactivation of Hdh.
Figure 2: Inactivation of Hdh expression in mouse brain.
Figure 3: Abnormal limb-clasping and brain morphology in mutant mice.
Figure 4: Brain histology in L7ag13 and R1ag5 mutants.
Figure 5: Fluoro-jade staining in mutant brains.
Figure 6: Altered MAP2 immunostaining and gliosis in mutant brains.
Figure 7: Spermatogenesis is affected in mutant testis.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Reddy, P.H., Williams, M. & Tagle, D.A. Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci. 22, 248–255 (1999).

    CAS  Article  Google Scholar 

  2. 2

    DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Li, S.H. et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11, 985–993 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Strong, T.V. et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genet. 5, 259–265 (1993).

    CAS  Article  Google Scholar 

  5. 5

    Sharp, A.H. et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 14, 1065–1074 (1995).

    CAS  Article  Google Scholar 

  6. 6

    DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Gutekunst, C.A. et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl Acad. Sci. USA 92, 8710–8714 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Ferrante, R.J. et al. Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J. Neurosci. 17, 3052–3063 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Velier, J. et al. Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40 (1998).

    CAS  Article  Google Scholar 

  10. 10

    MacDonald, M.E. & Gusella, J.F. Huntington's disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol. 6, 638–643 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Duyao, M.P. et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407–410 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Zeitlin, S., Liu, J.P., Chapman, D.L., Papaioannou, V.E. & Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genet. 11, 155–163 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    CAS  Article  Google Scholar 

  14. 14

    O'Kusky, J.R., Nasir, J., Cicchetti, F., Parent, A. & Hayden, M.R. Neuronal degeneration in the basal ganglia and loss of pallido-subthalamic synapses in mice with targeted disruption of the Huntington's disease gene. Brain Res. 818, 468–479 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl Acad. Sci. USA 85, 5166–5170 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Mayford, M., Wang, J., Kandel, E.R. & O'Dell, T.J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81, 891–904 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    CAS  Article  Google Scholar 

  18. 18

    van den Akker, E. et al. Targeted inactivation of Hoxb8 affects survival of a spinal ganglion and causes aberrant limb reflexes. Mech. Dev. 89, 103–114 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Lalonde, R. Motor abnormalities in weaver mutant mice. Exp. Brain Res. 65, 479–481 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Matsuoka, Y., Kitamura, Y., Tooyama, I., Kimura, H. & Taniguchi, T. In vivo hypoxia-induced neuronal damage with an enhancement of neuronal nitric oxide synthase immunoreactivity in hippocampus. Exp. Neurol. 146, 57–66 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Santarosa, R. et al. Hyperplasia and apoptosis. Opposing cellular processes that regulate the response of the rabbit bladder to transient outlet obstruction. Lab. Invest. 70, 503–510 (1994).

    CAS  Google Scholar 

  23. 23

    Schmued, L.C., Albertson, C. & Slikker, W. Jr Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 751, 37–46 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Bordelon, Y.M. & Chesselet, M.-F. Early effects of intrastriatal injections of quinolinic acid on microtubule-associated protein-2 and neuropeptides in rat basal ganglia. Neuroscience 93, 843–853 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Sibilia, M., Steinbach, J.P., Stingl, L., Aguzzi, A. & Wagner, E.F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 17, 719–731 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Doherty, P., Cohen, J. & Walsh, F.S. Neurite outgrowth in response to transfected NCAM changes during development and is modulated by polysialic acid. Neuron 5, 209–219 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Hynes, R.O. & Lander, A.D. Contact and adhesive specificities in the associations, migrations and targeting of cells and axons. Cell 68, 303–322 (1992).

    CAS  Article  Google Scholar 

  28. 28

    Haney, C.A. et al. Heterophilic binding of L1 on unmyelinated sensory axons mediates schwann cell adhesion and is required for axonal survival. J. Cell Biol. 146, 1173–1183 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Lagenaur, C. & Lemmon, V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc. Natl Acad. Sci. USA 84, 7753–7747 (1987).

    CAS  Article  Google Scholar 

  30. 30

    Landmesser, L., Schultz, K. & Rutishauser, U. Distinct roles for adhesion molecules during innervation of embryonic chick muscle. Dev. Biol. 130, 645–670 (1988).

    CAS  Article  Google Scholar 

  31. 31

    Dragatsis, I., Efstratiadis, A. & Zeitlin, S. Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125, 1529–1539 (1998).

    CAS  Google Scholar 

  32. 32

    White, J.K. et al. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nature Genet. 17, 404–410 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Metzler, M. et al. Life without huntingtin: normal differentiation into functional neurons. J. Neurochem. 72, 1009–1018 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Block-Galarza, J. et al. Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport 8, 2247–2251 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Sapp, E. et al. Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease. J. Neuropathol. Exp. Neurol. 58, 165–173 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Narain, Y., Wyttenbach, A., Rankin, J., Furlong, R.A. & Rubinsztein, D.C. A molecular investigation of true dominance in Huntington's disease. J. Med. Genet. 36, 739–746 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Wheeler, V.C. et al. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9, 503–513 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Rich, T. et al. Disassembly of nuclear inclusions in the dividing cell–a novel insight into neurodegeneration. Hum. Mol. Genet. 8, 2451–2459 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Dragatsis, I., Dietrich, P. & Zeitlin, S. Expression of the Huntingtin-associated protein 1 gene in the developing and adult mouse. Neurosci. Lett. 282, 37–40 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Sittler, A. et al. SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol. Cell 2, 427–436 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Sathasivam, K. et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum. Mol. Genet. 8, 813–822 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Levine, M.S. et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. J. Neurosci. Res. 58, 515–532 (1999).

    CAS  Article  Google Scholar 

  43. 43

    Dragatsis, I. & Zeitlin, S. CaMKIIσ-cre transgene expression and recombination patterns in the mouse brain. Genesis 26, 133–135 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Persichetti, F. et al. Normal and expanded Huntington's disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol. Med. 1, 374–383 (1995).

    CAS  Article  Google Scholar 

  45. 45

    Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835, 18–26 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Rigamonti, D. et al. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 3705–3713 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R.S. Fisher and P. Dietrich for histological examinations; M. Mendelsohn for blastocyst injections; K. Ratnam and T. Kolar for technical assistance; M. MacDonald, J. Goldman and T. Jessell for antibodies; A. Efstratiadis for helpful discussions and support; D. Wolgemuth and E.X. Wu for suggestions; and P. Dietrich, J.-P. Liu, A. Yamamoto and R. Hen for critical reading of the manuscript. We are grateful for the generous support provided to S.Z. and M.S.L. by the Hereditary Disease Foundation and the Hereditary Disease Foundation's Cure Huntington's Disease Initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott Zeitlin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dragatsis, I., Levine, M. & Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26, 300–306 (2000). https://doi.org/10.1038/81593

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing