Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted gene knockout mediated by triple helix forming oligonucleotides

Abstract

Triple helix forming oligonucleotides (TFOs) recognize and bind sequences in duplex DNA and have received considerable attention because of their potential for targeting specific genomic sites 1, 2, 3 . TFOs can deliver DNA reactive reagents to specific sequences in purified chromosomal DNA (ref. 4 ) and nuclei 5 . However, chromosome targeting in viable cells has not been demonstrated, and in vitro experiments indicate that chromatin structure is incompatible with triplex formation 6, 7, 8 . We have prepared modified TFOs, linked to the DNA-crosslinking reagent psoralen, directed at a site in the Hprt gene. We show that stable Hprt -deficient clones can be recovered following introduction of the TFOs into viable cells and photoactivation of the psoralen. Analysis of 282 clones indicated that 85% contained mutations in the triplex target region. We observed mainly deletions and some insertions. These data indicate that appropriately constructed TFOs can find chromosomal targets, and suggest that the chromatin structure in the target region is more dynamic than predicted by the in vitro experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences of Hprt target and TFOs
Figure 2: Gel electrophoresis of exon-5 PCR products .
Figure 3: Chromosomal Hprt deletions and point mutations

Similar content being viewed by others

References

  1. Chubb, J.M. & Hogan, M.E. Human therapeutics based on triple helix technology. Trends Biotechnol. 10, 132–136 (1992).

    Article  CAS  Google Scholar 

  2. Thuong, N. & Helene, C. Sequence specific recognition and modification of double helical DNA by oligonucleotides. Angew. Chem. Int. Ed. Engl. 32, 666–690 (1993).

    Article  Google Scholar 

  3. Neidle, S. Recent developments in triple helix regulation of gene expression. Anti-Cancer Drug Design 12, 433–442 (1997).

    CAS  PubMed  Google Scholar 

  4. Strobel, S.A., Doucette-Stamm, L.A., Riba, L., Houseman, D.E. & Dervan, P.B. Site specific cleavage of human chromosome 4 mediated by triple helix formation. Science 254, 1639–1642 (1991).

    Article  CAS  Google Scholar 

  5. Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Charneau, P. & Helene, C. Accessibility of nuclear DNA to triplex forming oligonucleotides: the integrated HIV-1 provirus as a target. Proc. Natl Acad. Sci. USA 94, 79–84 (1997).

    Article  CAS  Google Scholar 

  6. Espinas, M.L., Jimenez-Garcia, E., Martinez-Balbas, A. & Azorin, F. Formation of triple stranded DNA at d(GA-TC)n sequences prevents nucleosome assembly and is hindered by nucleosomes. J. Biol. Chem. 271, 31807–31812 (1996).

    Article  CAS  Google Scholar 

  7. Westin, L., Blomquist, P., Milligan, J.F., & Wrange, O. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosomal barrier. Nucleic Acids Res. 23, 2184–2191 (1995).

    Article  CAS  Google Scholar 

  8. Brown, P.M. & Fox, K.R. Nucleosome core particles inhibit triple helix formation. Biochem. J. 319, 607–611 (1996).

    Article  CAS  Google Scholar 

  9. Wang, G., Levy., D.D., Seidman, M.M. & Glazer, P. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol. Cell. Biol. 15, 1759–1768 (1995).

    Article  CAS  Google Scholar 

  10. Rossiter, B.J.F., Fuscoe, J.C., Muzny, D.M., Fox, M. & Caskey, C.T. The chinese hamster hprt gene: Restriction map, sequence analysis, and multiplex detection screen. Genomics 9, 247–256 (1991).

    Article  CAS  Google Scholar 

  11. Schneider, T.D. Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences. Nucleic Acids Res. 25, 4408–4415 (1997).

    Article  CAS  Google Scholar 

  12. Cariello, N. & Skopek,T.R. Analysis of mutations occurring at the human hprt locus. J. Mol. Biol. 231, 41–57 (1993).

    Article  CAS  Google Scholar 

  13. Griffin, L.C. & Dervan, P.B. Recognition of thymidine-adenine base pairs by guanine in a pyrimidine triple helix motif. Science 245, 967–971 (1989).

    Article  CAS  Google Scholar 

  14. Fossella, J.A., Kim, Y.J., Shih, H., Richards, E.G. & Fresco, J.R. Relative specificities in binding of Watson Crick base pairs by third strand residues in a DNA pyrimidine triplex motif. Nucleic Acids Res. 21, 4511–4515 (1993).

    Article  CAS  Google Scholar 

  15. Korshun, V.A. et al. New pyrene derivatives for fluorescent labeling of oligonucleotides. Nucleosides and Nucleotides 16, 1461–1464 (1997).

    Article  CAS  Google Scholar 

  16. Orson, F.M., Kinsey, B.M. & McShan, W.M. Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides. Nucleic Acids Res. 22, 479–484 (1994).

    Article  CAS  Google Scholar 

  17. Koshlap, K.M., Gillespie, P., Dervan, P.B. & Feigon, J. Nonnatural deoxyribonucleosides D3 incorporated in an intramolecular DNA triplex binds sequence specifically by intercalation. J. Am. Chem. Soc. 115, 7908–7909 (1993).

    Article  CAS  Google Scholar 

  18. Kukreti, S., Sun, J.S., Garestier, T. & Helene, C. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine containing oligonucleotides. Nucleic Acids Res. 25, 4264–4270 (1997).

    Article  CAS  Google Scholar 

  19. Cariello, N.F. Software for the analysis of mutations at the human hprt locus. Mutat. Res. 312, 173–185 (1994).

    Article  CAS  Google Scholar 

  20. Laquerbe, A., Moustacchi, E. & Papadopoulo, D. Genotoxic potential of psoralen crosslinks versus monoadducts in normal human lymphoblasts. Mutat. Res. 346, 173–179 (1995).

    Article  CAS  Google Scholar 

  21. Kunkel, T.A. Biological asymmetries and the fidelity of eukaryotic DNA replication. Bioessays 14, 303–308 (1992).

    Article  CAS  Google Scholar 

  22. Sargent, R.G., Brenneman, M.A. & Wilson, J.H. Repair of site specific double strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).

    Article  CAS  Google Scholar 

  23. Thacker, J., Chalk, J., Ganesh, A. & North, P. A mechanism for deletion formation by human cell extracts: the involvement of short sequence repeats. Nucleic Acids Res. 20, 6183–6188 (1992).

    Article  CAS  Google Scholar 

  24. Phillips, J.W. & Morgan, W.F. Illegitimate recombination induced by DNA double strand breaks in a mammalian chromosome. Mol. Cell. Biol. 14, 5794–5803 (1994).

    Article  CAS  Google Scholar 

  25. Wang, G., Seidman, M.M. & Glazer, P.M. Mutagenesis in mammalian cells induced by triple helix formation and transcription coupled repair. Science 271, 802–805 (1996).

    Article  CAS  Google Scholar 

  26. Escude, C. et al. Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies. Nucleic Acids Res. 21, 5547–5553 (1993).

    Article  CAS  Google Scholar 

  27. Posvic, T.J. & Dervan, P.B. Triple helix formation by oligonucleotides on DNA extended to the physiological range. J. Am. Chem. Soc. 111, 3059–3061 (1989).

    Article  Google Scholar 

  28. Lee, J.S., Woodsworth, M.L., Latimer, L.J.P., & Morgan, A.R. Poly(pyrimidine):poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res. 12, 6603–6614 (1984).

    Article  CAS  Google Scholar 

  29. Gilar, M., Belenky, A., Smisek, D.L., Bourque, A. & Cohen, A.S. Kinetics of phosphorothioate oligonucleotide metabolism in biological fluids. Nucleic Acids Res. 25, 3615–3620 (1997).

    Article  CAS  Google Scholar 

  30. Agrawal, S. et al. Mixed backbone oligonucleotides as second generation antisense oligonucleotides: In vitro and in vivo studies. Proc. Natl Acad. Sci. USA 94, 2620–2625 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Seidman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, A., Khorlin, A., Dyatkina, N. et al. Targeted gene knockout mediated by triple helix forming oligonucleotides. Nat Genet 20, 212–214 (1998). https://doi.org/10.1038/2530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing