Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis


The neuron-restrictive silencer factor NRSF (also known as REST and XBR) can silence transcription from neuronal promoters in non-neuronal cell lines, but its function during normal development is unknown. In mice, a targeted mutation of Rest, the gene encoding NRSF, caused derepression of neuron-specific tubulin in a subset of non-neural tissues and embryonic lethality. Mosaic inhibition of NRSF in chicken embryos, using a dominant-negative form of NRSF, also caused derepression of neuronal tubulin, as well as of several other neuronal target genes, in both non-neural tissues and central nervous system neuronal progenitors. These results indicate that NRSF is required to repress neuronal gene expression in vivo, in both extra-neural and undifferentiated neural tissue.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Targeted disruption of Rest, the gene encoding NRSF.
Figure 2: Early expression of NRSF and morphologic comparison of mutant and wild-type embryos.
Figure 4: Analysis of ßIII tubulin derepression in sections of E9.
Figure 3: The Rest mutation causes derepression of ßIII tubulin in non-neuronal tissues.
Figure 5: Sequence and expression of chick NRSF and inhibition in fibroblasts by dnNRSF.
Figure 6: Derepression of multiple neuronal NRSF target genes in chick embryos injected with dnNRSF into somites.
Figure 7: Derepression and upregulation of neuronal genes in neural crest-derived peripheral glial cells.
Figure 8: Precocious expression of neuronal markers in CNS progenitors of dnNRSF-infected embryos.
Figure 9: Role of NRSF in transcriptional regulation.

Accession codes




  1. 1

    Arnone, M.I. & Davidson, E.H. The hardwiring of development—organization and function of genomic regulatory systems. Development 124, 1851–1864 (1997).

    CAS  PubMed  Google Scholar 

  2. 2

    Gray, S. & Levine, M. Transcriptional repression in development . Curr. Opin. Cell. Biol. 8, 358– 364 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Mandel, G. & McKinnon, D. Molecular basis of neural-specific gene expression. Annu. Rev. Neurosci. 16, 323–345 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Schoenherr, C.J. & Anderson, D.J. Silencing is golden: negative regulation in the control of neuronal gene transcription . Curr. Opin. Neurobiol. 5, 566– 571 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Mori, N., Schoenherr, C., Vandenbergh, D.J. & Anderson, D.J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells . Neuron 9, 45–54 (1992).

    CAS  Article  Google Scholar 

  6. 6

    Kraner, S.D., Chong, J.A., Tsay, H.J. & Mandel, G. Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9, 37–44 ( 1992).

    CAS  Article  Google Scholar 

  7. 7

    Schoenherr, C.J., Paquette, A.J. & Anderson, D.J. Identification of potential target genes for the neuron-restrictive silencer factor. Proc. Natl Acad. Sci. USA 93, 9881–9886 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Scholl, T., Stevens, M.B., Mahanta, S. & Strominger, J.L. A zinc finger protein that represses transcription of the human MHC class II gene, DPA. J. Immunol. 156, 1448– 1457 (1996).

    CAS  PubMed  Google Scholar 

  9. 9

    Schoenherr, C.J. & Anderson, D.J. The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science 267, 1360– 1363 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Chong, J.A. et al. REST: A mammalian silencer protein that restricts sodium channel expression to neurons. Cell 80, 949– 957 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Wuenschell, C.W., Mori, N. & Anderson, D.J. Analysis of SCG10 gene expression in transgenic mice reveals that neural specificity is achieved through selective derepression . Neuron 4, 595–602 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Bessis, A., Champtiaux, N., Chatelin, L. & Changeux, J.-P. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc. Natl Acad. Sci. USA 94, 5906– 5911 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Kallunki, P., Edelman, G.M. & Jones, F.S. Tissue-specific expression of the L1 cell adhesion molecular is modulated by the neural restrictive silencer element. J. Cell. Biol. 138, 1343–1354 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Kallunki, P., Jenkinson, S., Edelman, G.M. & Jones, F.S. Silencer elements modulate the expression of the gene for the neuron-glia cell-adhesion molecule, NG-CAM. J. Biol. Chem. 270, 21291–21298 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Li, L., Suzuki, T., Mori, N. & Greengard, P. Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc. Natl Acad. Sci. USA 90, 1460–1464 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Schoch, S., Cibelli, G. & Thiel, G. Neuron-specific gene expression of synapsin I: major role of a negative regulatory mechanism. J. Biol. Chem. 271, 3317–3323 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Moody, S.A., Quigg, M.S. & Frankfurter, A. Development of the peripheral trigeminal system in the chick revealed by an isotype-specific anti-ß-tubulin monoclonal antibody . J. Comp. Neurol. 279, 567– 580 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Molkentin, J.D. & Olson, E.N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6, 445–453 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Tapia-Ramirez, J., Eggen, B.J.L., Peral-Rubio, M.J., Toledo-Aral, J.J. & Mandel, G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc. Natl Acad. Sci. USA 94, 1177–1182 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Fekete, D.M. & Cepko, C.L. Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. 13, 2604–2613 (1993).

  21. 21

    Homburger, S.A. & Fekete, D.M. High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses . Dev. Dyn. 206, 112–120 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Petropoulos, C.J. & Hughes, S.H. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J. Virol. 65, 3728– 3737 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Bader, D., Masaki, T. & Fischmann, D.A. Immuno-chemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell. Biol. 95, 763–770 ( 1982).

    CAS  Article  Google Scholar 

  24. 24

    Kallunki, P., Edelman, G.M. & Jones, F.S. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc. Natl Acad. Sci. USA in press.

  25. 25

    Palm, K., Belluardo, N., Metsis, M. & Timmusk, T. Neuronal expression of zinc-finger transcription factor REST/NRSF/XBR gene . J. Neurosci. 18, 1280– 1296 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Vandenbergh, D.J., Wuenschell, C.W., Mori, N. & Anderson, D.J. Chromatin structure as a molecular marker of cell lineage and developmental potential in neural crest-derived chromaffin cells. Neuron 3, 507–518 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Kohler, J., Schafer-Preuss, S. & Buttgereit, D. Related enhancers in the intron of the beta1 tubulin gene of Drosophila melanogaster are essential for maternal and CNS-specific expression during embryogenesis. Nucleic Acids Res. 24, 2543–2550 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Robertson, E.J. Embryo-derived stem cell lines. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 71– 112 (IRL Press, Oxford, 1987).

    Google Scholar 

  29. 29

    Hunter, E. Biological techniques for avian sarcoma viruses. Methods Enzymol. 58, 379–393 ( 1979).

    CAS  Article  Google Scholar 

  30. 30

    Morgan, B.A. & Fekete, D.M. Manipulating gene expression with replication-competent retroviruses. in Methods in Avian Embryology (ed. Bronner-Fraser, M.E.) 185–218 (Academic Press, San Diego, 1996).

    Google Scholar 

  31. 31

    Hamburger, V. & Hamilton, H.L. A series of normal stages in the development of the chick embryo. Dev. Dyn. 195, PPL>272 (1992).

  32. 32

    Kaufman, M.H. Histological procedures for mammalian embryos. in Postimplantation Mammalian Embryos, A Practical Approach (eds Copp, A.J. & Cockroft, D.L.) 81–91 (IRL Press, Oxford, UK, 1990).

    Google Scholar 

  33. 33

    Ma, Q., Chen, Z.F., Barrantes, I.B., de la Pompa, J.L. & Anderson, D.J. Neurogenin 1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469– 482 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Birren, S.J., Lo, L.C. & Anderson, D.J. Sympathetic neurons undergo a developmental switch in trophic dependence. Development 119, 597–610 (1993).

    CAS  PubMed  Google Scholar 

  35. 35

    Myat, A., Henrique, D., Ish-Horowicz, D. & Lewis, J. A chick homologue of Serrate, and its relationship with Notch and Delta homologues during central neurogenesis. Dev. Biol. 174, 233–247 ( 1996).

    CAS  Article  Google Scholar 

  36. 36

    Strahle, U., Blader, P., Adam, J. & Ingham, P. A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material . Trends Genet. 10, 75– 76 (1994).

    CAS  Article  Google Scholar 

Download references


We thank R. Behringer and A. Bradley for AB-1 ES cells, SNL 76/7STO cells and FIAU, G. Friedrich for a mouse 129 Sv/Ev genomic library, S.L. Zipursky and B. Wold for helpful discussions and P. Sternberg, K. Zinn, E. Meyerowitz and E. Davidson for their comments on the manuscript. We thank P. Lonnerberg for Ng-CAM cDNA, P. White for help generating CEFs, B. Martinsen and C. Marcelle for advice on RCAS concentration, Shirley Pease, Arti Gaur and members of the TAFCIT staff for expert assistance with chimaera production and mouse maintenance, S. Ou and L. Wang for help with monoclonal antibody production and S. Padilla for technical assistance. This work was supported by a grant from the NIH. A.J.P. is supported by an NIH pre-doctoral training grant. Z.F.C. is an Associate and D.J.A. an Investigator of the Howard Hughes Medical Institute.

Author information



Corresponding author

Correspondence to David J. Anderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, ZF., Paquette, A. & Anderson, D. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20, 136–142 (1998).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing