Abstract
A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Cohen, S.N., Chang, A.C., Boyer, H.W. & Helling, R.B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240– 3244 (1973).
Saiki, R.K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 ( 1985).
Newton, C.R. & Graham, A. PCR. (BIOS Scientific Publishers, Oxford, 1997).
Collins, J. & Hohn, B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage λ heads. Proc. Natl Acad. Sci. USA 75, 4242 –4246 (1978).
Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl Acad. Sci. USA 87, 103–107 ( 1990).
Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794– 8797 (1992).
Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).
Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. & Kushner, S.R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622 ( 1989).
Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol. 15, 859– 865 (1997).
Bubeck, P., Winkler, M. & Bautsch, W. Rapid cloning by homologous recombination in vivo . Nucleic Acids Res. 21, 3601– 3602 (1993).
Oliner, J.D., Kinzler, K.W. & Vogelstein, B. In vivo cloning of PCR products in E. coli. Nucleic Acids Res. 21, 5192–5197 (1993).
Degryse, E. In vivo intermolecular recombination in Escherichia coli: application to plasmid constructions. Gene 170, 45– 50 (1996).
Chartier, C. et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810 ( 1996).
Jasin, M. & Schimmel, P. Deletion of an essential gene in Escherichia coli by site specific recombination with linear DNA fragments. J. Bacteriol. 159, 783– 786 (1984).
Winans, S.C., Elledge, S.J., Heilig Krueger, J. & Walker, G.C. Site -directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J. Bacteriol. 161, 1219–1221 (1985).
Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H. & Koszinowski, U.H. Cloning and mutagenesis of a herpes virus genome as an infectious bacterial artificial chromosome. Proc. Natl Acad. Sci. USA 94, 14759– 14763 (1997).
He, T.C. et al. A simplified system or generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA 95, 2509– 2514 (1998).
Russell, C.B., Thaler, D.S. & Dahlquist, F.W. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J. Bacteriol. 171, 2609–2613 (1989).
Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).
Lafontaine, D. & Tollervey, D. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res. 24, 3469–3471 (1996).
Storck, T., Kruth, U., Kolhekar, R., Sprengel, R. & Seeburg, P.H. Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. Nucleic Acids Res. 24, 4594–4596 ( 1996).
Clark, A.J. et al. Genes of the RecE and RecF pathways of conjugational recombination in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 49, 453–462 ( 1984).
Hall, S.D., Kane, M.F. & Kolodner, R.D. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bacteriol. 175, 277–287 (1993).
Clark, A.J., Satin, L. & Chu, C.C. Transcription of the Escherichia coli recE gene from a promoter in Tn5 and IS50. J. Bacteriol. 176, 7024–7031 (1994).
Hashimoto-Gotoh, T. & Sekiguchi, M. Mutations of temperature sensitivity in R plasmid pSC101. J. Bacteriol. 131, 405–412 (1977).
Blomfield, I.C., Vaughn, V., Rest, R.F. & Eisenstein, B.I. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol. Microbiol. 5, 1447–1457 (1991).
Barbour, S.D., Nagaishi, H., Templin, A. & Clark, A.J. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations . Proc. Natl. Acad. Sci. USA 67, 128– 135 (1970).
Clark, A.J. Progress toward a metabolic interpretation of genetic recombination of Escherichia coli and bacteriophage λ. Genetics 78, 259–271 (1974).
Hall, S.D. & Kolodner, R.D. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc. Natl Acad. Sci. USA 91, 3205– 3209 (1994).
Kusano, K., Takahashi, N.K., Yoshikura, H. & Kobayashi, I. Involvement of RecE exonuclease and RecT annealing protein in DNA double-strand break repair by homologous recombination. Gene 138, 17–25 (1994).
Murphy, K.C. λ gam protein inhibits the helicase and χ-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol. 173, 5808–5821 ( 1991).
O'Connor, M., Peifer, M. & Bender, W. Construction of large DNA segments in Escherichia coli.Science 244, 1307– 1312 (1989).
Crouzet, J. et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl Acad. Sci. USA 94, 1414–1419 (1997).
Link, A.J., Phillips, D. & Church, G.M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179, 6228–6237 (1997).
Dabert, P. & Smith, G.R. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by χ sites. Genetics 145, 877– 889 (1997).
Jessen, J.R. et al. Modification of bacterial artificial chromosomes through χ-stimulated homologous recombination and its application in zebrafish transgenesis. Proc. Natl Acad. Sci. USA 95, 5121– 5126 (1998).
Murphy, K.C. Use of bacteriophage λ recombination functions to promote gene replacement in scherichia coli. J. Bacteriol. 180, 2063 –2071 (1998).
Kolodner, R., Hall, S.D. & Luisi-DeLuca, C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol. Microbiol. 11, 23–30 (1994).
Muniyappa, K. & Radding, C.M. The homologous recombination system of phage λ. Pairing activities of β protein. J. Biol. Chem. 261, 7472–7478 ( 1986).
Noirot, P. & Kolodner, R.D. DNA Strand invasion promoted by Escherichia coli RecT protein. J. Biol. Chem. 273, 12274–12280 (1998).
Resnick, M.A. The repair of double-strand breaks in DNA; a model involving recombination . J. Theor. Biol. 59, 97– 106 (1976).
Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).
Luisi-DeLuca, C. & Kolodner, R.D. Effect of terminal non-homology on intramolecular recombination of linear plasmid substrates in Escherichia coli. J. Mol. Biol. 227, 72–80 (1992).
Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering . Trends Genet. 9, 413– 421 (1993).
Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5, 521–527 (1994).
Schwenk, F., Kuehn, R., Angrand, P.-O., Rajewsky, K. & Stewart A.F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432 (1998).
Penfold, R.J. & Pemberton, J.M. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118, 145–146 ( 1992).
Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination . Nucleic Acids Res. 24, 4256– 4262 (1996).
Buchholz, F., Angrand, P.O. & Stewart, A.F. A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res. 24, 3118–3119 (1996).
Acknowledgements
We wish to thank A.J. Clark and M. Berlyn for providing E. coli strains, I. Blomfield for pIB279, the EMBL oligonucleotide and sequencing services for excellent standards and M. Nichols and P.-O. Angrand for discussions. We also thank A.J.H. Smith, M. Meredyth, R. Aasland and the referees for critical readings of the manuscript. Y.Z. is a recipient of an EMBO fellowship. This work was supported in part by a grant from the Volkswagen Foundation, Program on Conditional Mutagenesis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Y., Buchholz, F., Muyrers, J. et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20, 123–128 (1998). https://doi.org/10.1038/2417
Issue Date:
DOI: https://doi.org/10.1038/2417
This article is cited by
-
Method for plasmid-based antibiotic-free fermentation
Microbial Cell Factories (2024)
-
Rapid Rescue of Goose Astrovirus Genome via Red/ET Assembly
Food and Environmental Virology (2024)
-
Construction of a bacteriophage-derived recombinase system in Bacillus licheniformis for gene deletion
AMB Express (2023)
-
High-throughput ligand profile characterization in novel cell lines expressing seven heterologous insect olfactory receptors for the detection of volatile plant biomarkers
Scientific Reports (2023)
-
Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade–Cas3 system
Nature Protocols (2023)