Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • New Technology
  • Published:

A new logic for DNA engineering using recombination in Escherichia coli

Abstract

A straightforward way to engineer DNA in E. coli using homologous recombination is described. The homologous recombination reaction uses RecE and RecT and is transferable between E. coli strains. Several target molecules were manipulated, including high copy plasmids, a large episome and the E. coli chromosome. Sequential steps of homologous or site-specific recombination were used to demonstrate a new logic for engineering DNA, unlimited by the disposition of restriction endonuclease cleavage sites or the size of the target DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of a linear plus circular homologous recombination reaction.
Figure 2: Manipulation of a large E. coli episome by multiple recombination steps.
Figure 3: Manipulation of the E. coli chromosome.
Figure 4: Two rounds of ET cloning to introduce a point mutation.
Figure 5: Transferance of ET cloning into a recBC+ host to modify a large episome.

References

  1. Cohen, S.N., Chang, A.C., Boyer, H.W. & Helling, R.B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240– 3244 (1973).

    Article  CAS  Google Scholar 

  2. Saiki, R.K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 ( 1985).

    Article  CAS  Google Scholar 

  3. Newton, C.R. & Graham, A. PCR. (BIOS Scientific Publishers, Oxford, 1997).

  4. Collins, J. & Hohn, B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage λ heads. Proc. Natl Acad. Sci. USA 75, 4242 –4246 (1978).

    Article  CAS  Google Scholar 

  5. Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl Acad. Sci. USA 87, 103–107 ( 1990).

    Article  CAS  Google Scholar 

  6. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl Acad. Sci. USA 89, 8794– 8797 (1992).

    Article  CAS  Google Scholar 

  7. Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  CAS  Google Scholar 

  8. Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P. & Kushner, S.R. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171, 4617–4622 ( 1989).

    Article  CAS  Google Scholar 

  9. Yang, X.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnol. 15, 859– 865 (1997).

    Article  CAS  Google Scholar 

  10. Bubeck, P., Winkler, M. & Bautsch, W. Rapid cloning by homologous recombination in vivo . Nucleic Acids Res. 21, 3601– 3602 (1993).

    Article  CAS  Google Scholar 

  11. Oliner, J.D., Kinzler, K.W. & Vogelstein, B. In vivo cloning of PCR products in E. coli. Nucleic Acids Res. 21, 5192–5197 (1993).

    Article  CAS  Google Scholar 

  12. Degryse, E. In vivo intermolecular recombination in Escherichia coli: application to plasmid constructions. Gene 170, 45– 50 (1996).

    Article  CAS  Google Scholar 

  13. Chartier, C. et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jasin, M. & Schimmel, P. Deletion of an essential gene in Escherichia coli by site specific recombination with linear DNA fragments. J. Bacteriol. 159, 783– 786 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Winans, S.C., Elledge, S.J., Heilig Krueger, J. & Walker, G.C. Site -directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J. Bacteriol. 161, 1219–1221 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H. & Koszinowski, U.H. Cloning and mutagenesis of a herpes virus genome as an infectious bacterial artificial chromosome. Proc. Natl Acad. Sci. USA 94, 14759– 14763 (1997).

    Article  CAS  Google Scholar 

  17. He, T.C. et al. A simplified system or generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA 95, 2509– 2514 (1998).

    Article  CAS  Google Scholar 

  18. Russell, C.B., Thaler, D.S. & Dahlquist, F.W. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J. Bacteriol. 171, 2609–2613 (1989).

    Article  CAS  Google Scholar 

  19. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

  20. Lafontaine, D. & Tollervey, D. One-step PCR mediated strategy for the construction of conditionally expressed and epitope tagged yeast proteins. Nucleic Acids Res. 24, 3469–3471 (1996).

    Article  CAS  Google Scholar 

  21. Storck, T., Kruth, U., Kolhekar, R., Sprengel, R. & Seeburg, P.H. Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. Nucleic Acids Res. 24, 4594–4596 ( 1996).

    Article  CAS  Google Scholar 

  22. Clark, A.J. et al. Genes of the RecE and RecF pathways of conjugational recombination in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 49, 453–462 ( 1984).

    Article  CAS  Google Scholar 

  23. Hall, S.D., Kane, M.F. & Kolodner, R.D. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bacteriol. 175, 277–287 (1993).

    Article  CAS  Google Scholar 

  24. Clark, A.J., Satin, L. & Chu, C.C. Transcription of the Escherichia coli recE gene from a promoter in Tn5 and IS50. J. Bacteriol. 176, 7024–7031 (1994).

    Article  CAS  Google Scholar 

  25. Hashimoto-Gotoh, T. & Sekiguchi, M. Mutations of temperature sensitivity in R plasmid pSC101. J. Bacteriol. 131, 405–412 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Blomfield, I.C., Vaughn, V., Rest, R.F. & Eisenstein, B.I. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol. Microbiol. 5, 1447–1457 (1991).

    Article  CAS  Google Scholar 

  27. Barbour, S.D., Nagaishi, H., Templin, A. & Clark, A.J. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations . Proc. Natl. Acad. Sci. USA 67, 128– 135 (1970).

    Article  CAS  Google Scholar 

  28. Clark, A.J. Progress toward a metabolic interpretation of genetic recombination of Escherichia coli and bacteriophage λ. Genetics 78, 259–271 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hall, S.D. & Kolodner, R.D. Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc. Natl Acad. Sci. USA 91, 3205– 3209 (1994).

    Article  CAS  Google Scholar 

  30. Kusano, K., Takahashi, N.K., Yoshikura, H. & Kobayashi, I. Involvement of RecE exonuclease and RecT annealing protein in DNA double-strand break repair by homologous recombination. Gene 138, 17–25 (1994).

    Article  CAS  Google Scholar 

  31. Murphy, K.C. λ gam protein inhibits the helicase and χ-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol. 173, 5808–5821 ( 1991).

    Article  CAS  Google Scholar 

  32. O'Connor, M., Peifer, M. & Bender, W. Construction of large DNA segments in Escherichia coli.Science 244, 1307– 1312 (1989).

    Article  CAS  Google Scholar 

  33. Crouzet, J. et al. Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl Acad. Sci. USA 94, 1414–1419 (1997).

    Article  CAS  Google Scholar 

  34. Link, A.J., Phillips, D. & Church, G.M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J. Bacteriol. 179, 6228–6237 (1997).

    Article  CAS  Google Scholar 

  35. Dabert, P. & Smith, G.R. Gene replacement with linear DNA fragments in wild-type Escherichia coli: enhancement by χ sites. Genetics 145, 877– 889 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jessen, J.R. et al. Modification of bacterial artificial chromosomes through χ-stimulated homologous recombination and its application in zebrafish transgenesis. Proc. Natl Acad. Sci. USA 95, 5121– 5126 (1998).

    Article  CAS  Google Scholar 

  37. Murphy, K.C. Use of bacteriophage λ recombination functions to promote gene replacement in scherichia coli. J. Bacteriol. 180, 2063 –2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolodner, R., Hall, S.D. & Luisi-DeLuca, C. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol. Microbiol. 11, 23–30 (1994).

    Article  CAS  Google Scholar 

  39. Muniyappa, K. & Radding, C.M. The homologous recombination system of phage λ. Pairing activities of β protein. J. Biol. Chem. 261, 7472–7478 ( 1986).

    CAS  PubMed  Google Scholar 

  40. Noirot, P. & Kolodner, R.D. DNA Strand invasion promoted by Escherichia coli RecT protein. J. Biol. Chem. 273, 12274–12280 (1998).

    Article  CAS  Google Scholar 

  41. Resnick, M.A. The repair of double-strand breaks in DNA; a model involving recombination . J. Theor. Biol. 59, 97– 106 (1976).

    Article  CAS  Google Scholar 

  42. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  Google Scholar 

  43. Luisi-DeLuca, C. & Kolodner, R.D. Effect of terminal non-homology on intramolecular recombination of linear plasmid substrates in Escherichia coli. J. Mol. Biol. 227, 72–80 (1992).

    Article  CAS  Google Scholar 

  44. Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering . Trends Genet. 9, 413– 421 (1993).

    Article  CAS  Google Scholar 

  45. Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechnol. 5, 521–527 (1994).

    Article  CAS  Google Scholar 

  46. Schwenk, F., Kuehn, R., Angrand, P.-O., Rajewsky, K. & Stewart A.F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432 (1998).

    Article  CAS  Google Scholar 

  47. Penfold, R.J. & Pemberton, J.M. An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118, 145–146 ( 1992).

    Article  CAS  Google Scholar 

  48. Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F. & Stewart, A.F. Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination . Nucleic Acids Res. 24, 4256– 4262 (1996).

    Article  CAS  Google Scholar 

  49. Buchholz, F., Angrand, P.O. & Stewart, A.F. A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res. 24, 3118–3119 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank A.J. Clark and M. Berlyn for providing E. coli strains, I. Blomfield for pIB279, the EMBL oligonucleotide and sequencing services for excellent standards and M. Nichols and P.-O. Angrand for discussions. We also thank A.J.H. Smith, M. Meredyth, R. Aasland and the referees for critical readings of the manuscript. Y.Z. is a recipient of an EMBO fellowship. This work was supported in part by a grant from the Volkswagen Foundation, Program on Conditional Mutagenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Francis Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Buchholz, F., Muyrers, J. et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20, 123–128 (1998). https://doi.org/10.1038/2417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/2417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing