Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency

Abstract

The receptors for interferon-α/β (IFN-α/β) and IFN-γ activate components of the Janus kinase–signal transducer and activator of transcription (JAK–STAT) signaling pathway, leading to the formation of at least two transcription factor complexes1. STAT1 interacts with STAT2 and p48/IRF-9 to form the transcription factor IFN-stimulated gene factor 3 (ISGF3). STAT1 dimers form γ-activated factor (GAF). ISGF3 is induced mainly by IFN-α/β, and GAF by IFN-γ, although both factors can be activated by both types of IFN. Individuals with mutations in either chain of the IFN-γ receptor (IFN-γR) are susceptible to infection with mycobacteria2,3,4,5. A heterozygous STAT1 mutation that impairs GAF but not ISGF3 activation has been found in other individuals with mycobacterial disease6. No individuals with deleterious mutations in the IFN-α/β signaling pathway have been described. We report here two unrelated infants homozygous with respect to mutated STAT1 alleles. Neither IFN-α/β nor IFN-γ activated STAT1-containing transcription factors. Like individuals with IFN-γR deficiency, both infants suffered from mycobacterial disease, but unlike individuals with IFN-γR deficiency, both died of viral disease. Viral multiplication was not inhibited by recombinant IFN-α/β in cell lines from the two individuals. Inherited impairment of the STAT1-dependent response to human IFN-α/β thus results in susceptibility to viral disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kindred, phenotype and genotype information.
Figure 2: Impaired expression of STAT1 and IFN-inducible genes.
Figure 3: Impaired activation of GAFs by IFN-γ and IFN-α.
Figure 4: Impaired activation of ISGF3 by IFN-α.
Figure 5: Molecular complementation of STAT1 deficiency.
Figure 6: Absence of antiviral effects of IFN-α/β.

Similar content being viewed by others

References

  1. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  2. Newport, M.J. et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335, 1941–1949 (1996).

    Article  CAS  Google Scholar 

  3. Jouanguy, E. et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).

    Article  CAS  Google Scholar 

  4. Dorman, S.E. & Holland, S.M. Mutation in the signal-transducing chain of the interferon-γ receptor and susceptibility to mycobacterial infection. J. Clin. Invest. 101, 2364–2369 (1998).

    Article  CAS  Google Scholar 

  5. Casanova, J.L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  Google Scholar 

  6. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    Article  CAS  Google Scholar 

  7. Muller, M. et al. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-α and -γ signal transduction pathways. EMBO J. 12, 4221–4228 (1993).

    Article  CAS  Google Scholar 

  8. Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 93, 827–839 (1998).

    Article  CAS  Google Scholar 

  9. Yang, C.H. et al. Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor. J. Biol. Chem. 271, 8057–8061 (1996).

    Article  CAS  Google Scholar 

  10. Ramana, C.V., Gil, M.P., Schreiber, R.D. & Stark, G.R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling. Trends Immunol. 23, 96–101 (2002).

    Article  CAS  Google Scholar 

  11. McKendry, R. et al. High-frequency mutagenesis of human cells and characterization of a mutant unresponsive to both α and γ interferons. Proc. Natl. Acad. Sci. USA 88, 11455–11459 (1991).

    Article  CAS  Google Scholar 

  12. Horvath, C.M. & Darnell, J.E. Jr. The antiviral state induced by α interferon and γ interferon requires transcriptionally active Stat1 protein. J. Virol. 70, 647–650 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Improta, T. & Pine, R. Susceptibility to virus infection is determined by a Stat-mediated response to the autocrine effect of virus-induced type I interferon. Cytokine 9, 383–393 (1997).

    Article  CAS  Google Scholar 

  14. Shen, Y. & Darnell, J.E. Jr. Antiviral response in cells containing Stat1 with heterologous transactivation domains. J. Virol. 75, 2627–2633 (2001).

    Article  CAS  Google Scholar 

  15. Dorman, S.E. et al. Viral infections in interferon-γ receptor deficiency. J. Pediatr. 135, 640–643 (1999).

    Article  CAS  Google Scholar 

  16. Lee, C.K. et al. Distinct requirements for IFNs and STAT1 in NK cell function. J. Immunol. 165, 3571–3577 (2000).

    Article  CAS  Google Scholar 

  17. Nguyen, K.B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    Article  CAS  Google Scholar 

  18. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. London Ser. B 147, 258–267 (1957).

    Article  CAS  Google Scholar 

  19. Gresser, I. Role of interferon in resistance to viral infection in vivo. in Interferons and the Immune System (eds. Vilcek, J. & De Maeyer, E.) 221–247 (Elsevier Science Publishers B.V., Amsterdam, 1984).

    Google Scholar 

  20. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  CAS  Google Scholar 

  21. Hwang, S.Y. et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons α and β and alters macrophage responses. Proc. Natl. Acad. Sci. USA 92, 11284–11288 (1995).

    Article  CAS  Google Scholar 

  22. Fiette, L. et al. Theiler's virus infection of 129Sv mice that lack the interferon α/β or interferon γ receptors. J. Exp. Med. 181, 2069–2076 (1995).

    Article  CAS  Google Scholar 

  23. Garcia-Sastre, A. et al. The role of interferon in influenza virus tissue tropism. J. Virol. 72, 8550–8558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Leib, D.A. et al. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J. Exp. Med. 189, 663–672 (1999).

    Article  CAS  Google Scholar 

  25. Steinhoff, U. et al. Antiviral protection by vesicular stomatitis virus-specific antibodies in α/β interferon receptor-deficient mice. J. Virol. 69, 2153–2158 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. van den Broek, M.F., Muller, U., Huang, S., Aguet, M. & Zinkernagel, R.M. Antiviral defense in mice lacking both α/β and γ interferon receptors. J. Virol. 69, 4792–4796 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hefti, H.P. et al. Human MxA protein protects mice lacking a functional α/βinterferon system against La crosse virus and other lethal viral infections. J. Virol. 73, 6984–6991 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Durbin, J.E., Hackenmiller, R., Simon, M.C. & Levy, D.E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  Google Scholar 

  29. Meraz, M.A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  Google Scholar 

  30. Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity 13, 795–804 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Abel, C. Dargemont, C. Picard and C. Soudais for discussions and critical reading; S. Pellegrini, P. Lebon and E. Meurs for providing viruses; and J. Feinberg and M.T. Bandu for technical assistance. This work was supported by grants from Banque Nationale de Paris-Paribas, Fondation Schlumberger and Sequella Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Laurent Casanova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupuis, S., Jouanguy, E., Al-Hajjar, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat Genet 33, 388–391 (2003). https://doi.org/10.1038/ng1097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing