Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Positional cloning of the gene associated with X-linked juvenile retinoschisis

Abstract

X–linked juvenile retinoschisis (RS) is a recessively inherited vitreo-retinal degeneration characterized by macular pathology and intraretinal splitting of the retina. The RS gene has been localized to Xp22.2 to an approximately 1 Mb interval between DXS418 and DXS999/DXS7161. Mapping and expression analysis of expressed sequence tags have identified a novel transcript, designated XLRS1, within the centromeric RS locus that is exclusively expressed in retina. The predicted XLRS1 protein contains a highly conserved motif implicated in cell–cell interaction and thus may be active in cell adhesion processes during retinal development. Mutational analyses of XLRS1 in affected individuals from nine unrelated RS families revealed one nonsense, one frameshift, one splice acceptor and six missense mutations segregating with the disease phenotype in the respective families. These data provide strong evidence that the XLRS1 gene, when mutated, causes RS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Haas, J. Ueber das Zusammenvorkommen von Veraenderungen der Retina und Choroidea. Arch. Augenheilkd. 37, 343–348 (1898).

    Google Scholar 

  2. 2

    Deutman, A.F. Vitreoretinal dystrophies. In Hereditary Retinal and Choroidal Diseases (eds Krill, A. & Archer, D.B.) 1043–1108 (Harper & Row, New York, 1977).

    Google Scholar 

  3. 3

    Kawano, K., Tanaka, K., Murakami, F. & Ohba, N. Congenital hereditary retinoschisis: evolution at the initial stage. Arch. Clin. Exp. Ophthalmol. 217, 315–323 (1981).

    CAS  Article  Google Scholar 

  4. 4

    George, N.D., Yates, J.R. & Moore, A.T. Clinical features in affected males with X-linked retinoschisis. Arch. Ophthalmol. 114, 274–280 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Kellner, U., Brummer, S., Foerster, M.H. & Wessing, A. X-linked congenital retinoschisis. Arch. Clin. Exp. Ophthalmol. 228, 432–437 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Forsius, H. et al. Visual acuity in 183 cases of X-chromosomal retinoschisis. Can. J. Ophthalmol. 8, 385–393 (1973).

    CAS  PubMed  Google Scholar 

  7. 7

    Reichenbach, A. & Robinson, S.R. The involvement of Müller cells in the outer retina. in Neurobiology and Clinical Aspects of the Outer Retina (eds Djamgoz, M.B.A., Archer, S.N. & Vallerga, S.) 395–415 (Chapman and Hall, London, 1995).

    Google Scholar 

  8. 8

    Miller, R.F. & Dowling, J.E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).

    CAS  Article  Google Scholar 

  9. 9

    Arden, G.B., Gorin, M.B., Polkinghorne, P.J., Jay, M. & Bird, A.C. Detection of the carrier state of X-linked retinoschisis. Am. J. Ophthalmol. 105, 590–595 (1988).

    CAS  Article  Google Scholar 

  10. 10

    Sheffield, J.B. & Li, H.P. Interactions among cells of the developing neural retina in vitro. Am. Zool. 27, 145–159 (1987).

    Article  Google Scholar 

  11. 11

    Kljavin, I.J. & Reh, T.A. Muller cells are a preferred substrate for in vitro neurite extension by rod photoreceptor cells. J. Neurosci. 11, 2985–2994 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Ives, E.J., Ewing, C.C. & Innes, R. X-linked juvenile retinoschisis and Xg linkage in five families. Am. J. Hum. Genet. 22, A17–A18 (1970).

    Google Scholar 

  13. 13

    Wieacker, P. et al. Linkage relationships between retinoschisis, Xg, and a cloned DNA sequence from the distal short arm of the X chromosome. Hum. Genet. 64, 143–145 (1983).

    CAS  Article  Google Scholar 

  14. 14

    Alitalo, T., Kama, J., Forsius, H. & de la Chapelle, A.E. X-linked retinoschisis is closely linked to DXS41 and DXS16 but not DXS85. Clin. Genet. 32, 192–195 (1987).

    CAS  Article  Google Scholar 

  15. 15

    Weber, B.H.F. et al. X-linked juvenile retinoschisis (RS) maps between DXS987 and DXS443. Cytogenet. Cell. Genet. 69, 35–37 (1995).

    CAS  Article  Google Scholar 

  16. 16

    van de Vosse, E. et al. An Xp22.1–p22.2 YAC contig encompassing the disease loci for RS, KFSD, CLS, HYP and RP15: refined localization of RS. Eur. J. Hum. Genet. 4, 101–104 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Hupaniemi, L., Rantala, A., Tahvanainen, E., de la Chapelle, A. & Alitalo, T. Linkage disequilibrium and physical mapping of X-linked juvenile retinoschisis. Am. J. Hum. Genet. 60, 1139–1149 (1997).

    Google Scholar 

  18. 18

    Alitalo, T. et al. A 6-Mb YAC contig in Xp22.1–p22.2 spanning the DXS69E, XE59, GLRA2, PICA, GRPR, CALB3, and PHKA2 genes. Genomics 25, 691–700 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Ferrero, G.B. et al. An integrated physical and genetic map of a 35 Mb region on chromosome Xp22.3–Xp21.3. Hum. Mol. Genet. 4, 1821–1827 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Nehls, M., Pfeifer, D. & Boehm, T. Exon amplification from complete libraries of genomic DNA using a novel phage vector with automatic plasmid excision facility: application to the mouse neurof ibromatosis-1 locus. Oncogene 9, 2169–2175 (1994).

    CAS  Google Scholar 

  21. 21

    Rommens, J.M. et al. A transcription map of the region containing the Huntington disease gene. Hum. Mol. Genet. 2, 901–907 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    CAS  Article  Google Scholar 

  23. 23

    Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Gierasch, L.M. Signal sequences. Biochemistry 28, 923–930 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Springer, W.R., Cooper, D.N. & Barondes, S.H. Discoidin I is implicated in cell-substratum attachment and ordered cell migration of Dictyostelium discoideum and resembles fibronectin. Cell 39, 557–564 (1984).

    CAS  Article  Google Scholar 

  26. 26

    Kotani, E. et al. Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim. Biophys. Acta 1260, 245–258 (1995).

    Article  Google Scholar 

  27. 27

    Takagi, S. et al. The A5 antigen, a candidate for the neuronal recognition molecule, has homologies to complement components and coagulation factors. Neuron 7, 295–307 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Takagi, S. et al. Expression of a cell adhesion molecule, neuropilin, in the developing chick nervous system. Dev. Biol. 170, 207–222 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Kawakami, A., Kitsukawa, T., Takagi, S. & Fujisawa, H. Developmental regulated expression of a cell surface protein, neuropilin, in the mouse nervous system. J. Neurobiol. 29, 1–17 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Stubbs, J.D. et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII–like sequences. Proc. Natl. Acad. Sci. USA 87, 8417–8421 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Larocca, D. et al. A Mr 46,000 human milk fat globule protein that is highly expressed in human breast tumors contains factor VIII–like domains. Cancer Res. 51, 4994–4998 (1991).

    CAS  PubMed  Google Scholar 

  32. 32

    Cripe, L.D., Moore, K.D. & Kane, W.H. Structure of the gene for human coagulation factor V. Biochemistry 31, 3777–3785 (1992).

    CAS  Article  Google Scholar 

  33. 33

    Truett, M.A. et al. Characterization of the polypeptide composition of human factor VIII:C and the nucleotide sequence and expression of the human kidney cDNA. DNA 4, 333–349 (1985).

    CAS  Article  Google Scholar 

  34. 34

    Elder, B., Lakich, D. & Gitschier, J. Sequence of the murine factor VIII cDNA. Genomics 16, 374–379 (1993).

    CAS  Article  Google Scholar 

  35. 35

    Perez, J.L. et al. Identification and chromosomal mapping of a receptor tyrosine kinase with a putative phospholipid binding sequence in its ectodomain. Oncogene 9, 211–219 (1994).

    CAS  PubMed  Google Scholar 

  36. 36

    Penotti, F.E. Human pre-mRNA splicing signals. J. Theor. Biol. 150, 385–420 (1991).

    CAS  Article  Google Scholar 

  37. 37

    Kane, W.H. & Davie, E.W. Blood coagulation factors V and VIII: structural and functional similarities and their relationsship to hemorrhage and thrombic disorders. Blood 71, 539–555 (1988).

    CAS  PubMed  Google Scholar 

  38. 38

    Arai, M., Scandella, D. & Hoyer, L.W. Molecular basis of factor VIII inhibition by human antibodies: antibodies that bind to the factor VIII light chain prevent the interaction of factor VIM with phospholipid. J. Clin. Invest. 83, 1978–1984 (1989).

    CAS  Article  Google Scholar 

  39. 39

    Rosen, S.D., Kafka, J.A., Simpson, D.L. & Barondes, S.H. Developmentally regulated, carbohydrate-binding protein in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 70, 2554–2557 (1973).

    CAS  Article  Google Scholar 

  40. 40

    Manschot, W.A. Pathology of hereditary juvenile retinoschisis. Arch. Ophthalmol. 88, 131–138 (1972).

    CAS  Article  Google Scholar 

  41. 41

    Yanoff, M., Kertesz-Rahn, E. & Zimmerman, L.E. Histopathology of juvenile retinoschisis. Arch. Ophthalmol. 79, 49–53 (1968).

    CAS  Article  Google Scholar 

  42. 42

    Condon, G.P., Brownstein, S., Wang, N.S., Kearns, J.A. & Ewing, C.C. Congenital hereditary (juvenile X-linked) retinoschisis: histopathologic and ultrastructural findings in three eyes. Arch. Ophthalmol. 104, 576–583 (1986).

    CAS  Article  Google Scholar 

  43. 43

    Molday, R.S., Hicks, D. & Molday, L. Peripherin: a rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol. Vis. Sci. 28, 50–61 (1987).

    CAS  PubMed  Google Scholar 

  44. 44

    Felbor, U., Schilling, H. & Weber, B.H.F. Adult vitelliform macular dystrophy is frequently associated with mutations in the peripherin/RDS gene. Hum. Mutat. (in the press).

  45. 45

    Weber, B.H.F., Vogt, G., Pruett, R.C., Stöhr, H. & Felbor, U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genet. 8, 352–356 (1994).

    CAS  Article  Google Scholar 

  46. 46

    Allikmets, R. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genet. 15, 236–246 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Church, C.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    CAS  Article  Google Scholar 

  48. 48

    Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium-thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    CAS  Article  Google Scholar 

  49. 49

    Ewing, C.C. & Ives, E.J. Juvenile hereditary retinoschisis. Trans. Ophthalmol. Soc. UK 89, 29–39 (1970).

    CAS  PubMed  Google Scholar 

  50. 50

    Genetics Computer Group. Program Manual for Wisconsin Package, Version 9, Madison, Wisconsin, 1996.

  51. 51

    Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    CAS  Article  Google Scholar 

  52. 52

    Fukuzawa, M. & Ochiai, H. Molecular cloning and characterization of the cDNA for discoidin II of Dictyostelium discoideum. Plant Cell Physiol. 37, 505–514 (1996).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernhard H.F. Weber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sauer, C., Gehrig, A., Warneke-Wittstock, R. et al. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 17, 164–170 (1997). https://doi.org/10.1038/ng1097-164

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing