Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic imprinting of p57KIP2, a cyclin–dependent kinase inhibitor, in mouse

Abstract

p57KIP2 is a potent tight-binding inhibitor of several G1 cyclin/Cdk complexes, and is a negative regulator of cell proliferation1,2. The gene encoding human p57KIP is located on chromosome 11 p15.5 (ref. 2), a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome, a familial cancer syndrome, marking it a tumour suppressor candidate. Several types of childhood tumours including Wilm's tumour, adrenocortical carcinoma and rhabdomyosarcoma display a specific loss of maternal 11p15 alleles, suggesting that genomic imprinting3–8 plays an important part9–12. Genetic analysis of the Beckwith-Wiedemann syndrome has indicated maternal carriers as well as suggested a role in genomic imprinting13. Here, as a first step towards elucidating the genesis of human cancers in this region, we showed that a mouse homologue of p57KIP2 is genomically imprinted. The paternally inherited allele is transcriptionally repressed and methylated. This murine gene maps to the distal region of chromosome7, within acluster of imprinted genes, including insulin-2, insulin-like growth factor-2, H19 and Mash2 (refs 14–18).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mong-Hong, L., Reynisdottir, I. & Massague, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649 (1995).

    Article  Google Scholar 

  2. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Solter, D. Differential imprinting and expression of maternal and paternal genomes. A. Rev. Genet. 22, 127–146 (1988).

    Article  CAS  Google Scholar 

  4. Barlow, D.P. Imprinting: a gamete's point of view. Trends Genet. 10, 194–199 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ohlsson, R., Barlow, D.P. & Surani, A. Impression of imprints. Trends Genet. 10, 415–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Razin, A. & Cedar, H. DNA methylation and genomic imprinting. Cell 77, 473–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Curr. Opin. Genet. Dev. 4, 265–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Nicholls, R.D. New insights reveal complex mechanisms involved in genomic imprinting. Am. J. hum. Genet. 54, 733–740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroeder, W.T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. hum. Genet. 40, 413–420 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms' tumour. Oncogene. 5, 1665–1668 (1990).

    CAS  PubMed  Google Scholar 

  11. Scrable, H. et al. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. natn. Acad. Sci. U.S.A. 86, 7480–7484 (1989).

    Article  CAS  Google Scholar 

  12. Seizinger, B. et al. Report of the committee on chromosome and gene loss in human neoplasia. Cytogenet. cell. Genet. 58, 1080–1096 (1991).

    Article  Google Scholar 

  13. Lubinsky, M., Herrmann, J., Kosseff, A.L. & Opitz, J.M. Autosomal-dominant sex-dependent transmission of the Wiedemann-Beckwith syndrome. Lancet 1, 932 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Dechiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Zemel, S., Bartolomei, M.S. & Tilghman, S.M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nature Genet. 2, 259–264 (1992).

    Article  Google Scholar 

  17. Giddings, S.J., King, C.D., Harman, K.W., Flood, J.F. & Carnaghi, L.R. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Guillemot, F. et al. Genomic imprinting of Mash2, mouse gene required for trohpoblast development. Nature Genet. 9, 235–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Veres, G., Gibbs, R.A., Scherer, S.E. & Caskey, C.T. The molecular basis of the sparse fur mouse mutation. Science 237, 415–417 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6, 705–714 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Hatada, I. et al. Allele-specific methylation and expression of an imprinted U2af1-rs1 (SP2) gene. Nucl. Acids Res. 23, 36–41 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neumann, B., Kubicka, P. & Barlow, D.P. Characteristics of imprinted genes. Nature Genet. 9, 12–13 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Searle, A.G. & Beechey, C.V. Genomic imprinting phenomena on mouse chromosome 7. Genet. Res. 56, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Mclaughlin, K.J., Szabo, P. & Mann, J.R. Mouse embryos with paternal duplication of distal chromosome 7 are lethal at midgestation and possess aberrant expression levels of Igf2 and H19. Genes Dev. (in the press).

  25. Seizinger, B. et al. Report of the committee on chromosome and gene loss in human neoplasia. Cytogenet. Cell. Genet. 58, 1080–1096 (1991).

    Article  Google Scholar 

  26. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidine thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dietrich, W. et al. A genetic map of the mouse with 4006 simple sequence length polymorphisms. Nature Genet. 7, 220–245 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatada, I., Mukai, T. Genomic imprinting of p57KIP2, a cyclin–dependent kinase inhibitor, in mouse. Nat Genet 11, 204–206 (1995). https://doi.org/10.1038/ng1095-204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-204

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing