Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism

Abstract

Tay–Sachs and Sandhoff diseases are clinically similar neurodegenerative disorders. These two sphingolipidoses are characterized by a heritable absence of β–hexosaminidase A resulting in defective GM2 ganglioside degradation. Through disruption of the Hexa and Hexb genes in embryonic stem cells, we have established mouse models corresponding to each disease. Unlike the two human disorders, the two mouse models show very different neurologic phenotypes. Although exhibiting biochemical and pathologic features of the disease, the Tay–Sachs model showed no neurological abnormalities. In contrast, the Sandhoff model was severely affected. The phenotypic difference between the two mouse models is the result of differences in the ganglioside degradation pathway between mice and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gravel, R.A. et al. The GM2 gangliosidoses. in The metabolic and molecular bases of inherited disease (eds. Scriver, C.R., A.L. Beaudet, W. S. Sly, & D. Valle) 2839–2879 (McGraw-Hill Inc., 1995).

    Google Scholar 

  2. Leinekugel, P., Michel, S., Conzelmann, E. & Sandhoff, K. Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum. Genet. 88, 513–523 (1992).

    Article  CAS  Google Scholar 

  3. Yamanaka, S. et al. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc. natn. Acad. Sci. U.S.A. 91, 9975–9979 (1994).

    Article  CAS  Google Scholar 

  4. Taniike, M. et al. Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta Neuropathol. 89, 296–304 (1995).

    Article  CAS  Google Scholar 

  5. Yamanaka, S., Johnson, O.J., Norflus, F., Boles, D.J. & Praia, R.L. Structure and expression of the mouse (β-hexosaminidase genes, Hexa and Hexb. Genomics 21, 588–596 (1994).

    Article  CAS  Google Scholar 

  6. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  7. Lee, K.-F. et al. Targeted mutation of the gene encoding the low affinity receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69, 737–749 (1992).

    Article  CAS  Google Scholar 

  8. Sandhoff, K., Harzer, K., Wässle, W. & Jatzkewitz, H. Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J. Neurochem. 18, 2469–2489 (1971).

    Article  CAS  Google Scholar 

  9. Sandhoff, K. The biochemistry of sphingolipid storage diseases. Angew. Chem. Int. Ed. Engl. 16, 273–285 (1977).

    Article  CAS  Google Scholar 

  10. Sonderfeld, S. et al. Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur. J. Biochem. 149, 247–255 (1985).

    Article  CAS  Google Scholar 

  11. Conzelmann, E. & Sandhoff, K. Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe-Seyler's Z. physiol. Chem. 360, 1837–1849 (1979).

    Article  CAS  Google Scholar 

  12. Suzuki, K. Neuropathology of late onset gangliosidoses. Dev. Neurosci. 13, 205–210 (1991).

    Article  CAS  Google Scholar 

  13. Burg, J., Banerjee, A., Conzelmann, E. & Sandhoff, K. Activating proteins for ganglioside GM2 degradation by β-hexosaminidase isoenzymes in tissue extracts from different species. Hoppe-Seyler's Z. physiol. Chem. 364, 821–829 (1983).

    Article  CAS  Google Scholar 

  14. Sandhoff, K. & Jatzkewitz, H. A particle-bound sialyl lactosidoceramide splitting mammalian sialidase. Biochim. Biophys. Acta 141, 442–444 (1967).

    Article  CAS  Google Scholar 

  15. Riboni, L., Caminiti, A., Bassi, R. & Tettamanti, G. The degradative pathway of gangliosides GM1 and GM2 in Neuro2a cells by sialidase. J. Neurochem. 64, 451–454 (1995).

    Article  CAS  Google Scholar 

  16. Suzuki, Y., Jacob, J.C., Suzuki, K., Kutty, K.M. & Suzuki, K. GM2-gangliosidosis with total hexosaminidase deficiency. Neurol. 21, 313–328 (1971).

    Article  CAS  Google Scholar 

  17. Conzelmann, E. & Sandhoff, K. Biochemical basis of late-onset neurolipidoses. Dev. Neurosci. 13, 197–204 (1991).

    Article  CAS  Google Scholar 

  18. van den Eijnden, D.H. Chromatographic separation of gangliosides on precoated silicagel thin-layer plates. Hoppe-Seyler's Z. physiol. Chem. 352, 1601–1602 (1971).

    CAS  PubMed  Google Scholar 

  19. Robertson, E.J. Embryo-derived stem cells, in Teratocarcinomas and embryonic stem cells. (ed Robertson, E. J.) (IRL Press, Oxford, 1987).

    Google Scholar 

  20. Schwarzmann, G. A simple and novel method for tritium labeling of gangliosides and other sphingolipids. Biochim. Biophys. Acta 529, 106–114 (1978).

    Article  CAS  Google Scholar 

  21. Klima, H. et al. Over-expression of a functionally active human GM2-activator protein in Escherichia coli. Biochem. J. 292, 571–576 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sango, K., Yamanaka, S., Hoffmann, A. et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11, 170–176 (1995). https://doi.org/10.1038/ng1095-170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing