Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maintenance of an open reading frame as an additional level of scrutiny during splice site selection

Abstract

Although nonsense mutations have been associated with the skipping of specific constitutively spliced exons in selected genes, notably the fibrillin gene, the basis for this association is unclear. Now, using chimaeric constructs in a model in vivo expression system, premature termination codons are identified as determinants of splice site selection. Nonsense codon recognition prior to RNA splicing necessitates the ability to read the frame of precursor mRNA in the nucleus. We propose that maintenance of an open reading frame can serve as an additional level of scrutiny during exon definition. This process may have pathogenic and evolutionary significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  Google Scholar 

  2. Mount, S.M. A catalogue of splice junction sequences. Nucl. Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  3. Oshima, Y. & Qotoh, Y.J. Signals for the selection of a splice site in pre-mRNA. J. molec. Biol. 196, 247–259 (1987).

    Article  Google Scholar 

  4. Sharp, P.A. Splicing of messenger RNA precursors. Science 235, 766–771 (1987).

    Article  CAS  Google Scholar 

  5. Shapiro, M.B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucl. Acids Res. 15, 7155–7175 (1987).

    Article  CAS  Google Scholar 

  6. Grabowski, P.J., Seller, S.R. & Sharp, P.A. A multi-component complex is involved in the splicing of messenger RNA precursors. Cell 42, 345 (1985).

    Article  CAS  Google Scholar 

  7. Padgett, R.A., Grabowski, P.J., Konarska, M.M., Seller, S.R. & Sharp, P.A. Splicing of messenger RNA precursors. A. Rev. Biochem. 55, 1119–1150 (1986).

    Article  CAS  Google Scholar 

  8. Maniatis, T. & Reed, R. The role of small nuclear ribo nucleo proteln particles in pre-mRNA splicing. Nature 325, 673–678 (1987).

    Article  CAS  Google Scholar 

  9. Robberson, B.L., Cote, Q.J. & Berget, S.M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Molec. Cell. Biol. 10, 84–94 (1990).

    Article  CAS  Google Scholar 

  10. Niwa, M., MacDonald, C.C. & Berget, S.M. Are vertebrate exons scanned during splice-site selection? Nature 360, 277–280 (1992).

    Article  CAS  Google Scholar 

  11. Reed, R. & Maniatis, T. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46, 681–690 (1986).

    Article  CAS  Google Scholar 

  12. Libri, D., Qoux-Pelletan, M., Brody, E. & Fiszman, M.V. Exon as well as intron sequences are cis-regulating elements for mutually exclusive alternative splicing of the β-tropomyosin gene. Molec Cell. Biol. 10, 5036–5046 (1990).

    Article  CAS  Google Scholar 

  13. Domenjoud, L., Gallinaro, H., Kister, L., Meyer, S. & Jacob, M. Identification of a specific exon sequence that is a major determinant in the selection between a natural and cryptic 5′ splice site. Molec. Cell. Biol. 11, 4581–4590 (1991).

    Article  CAS  Google Scholar 

  14. Cooper, T.A. In vitro splicing of cardiac troponin T precursors. J. Biol. Chem. 267, 5330–5338 (1992).

    CAS  PubMed  Google Scholar 

  15. Steingrimsdottir, H., Rowley, G., Dorado, G., Cole, J. & Lehmann, A.R. Mutations which alter splicing in the human hypoxanthine guanine phosphoribosyltransferase gene. Nucl. Acids Res. 20, 1201–1208 (1992).

    Article  CAS  Google Scholar 

  16. Dietz, H.C. et al. The skipping of constitutive exons in vivo induced by nonsense mutations. Science 250, 680–683 (1993).

    Article  Google Scholar 

  17. Naeger, L.K., Schoberg, R.V., Zhao, Q., Tullis, G.E. & Pintell, D.J. Nonsense mutations inhibit splicing of MVM RNA in cis when they interrupt the reading frame of either exon of the final spliced product. Genes Dev. 6, 1107–1119 (1992).

    Article  CAS  Google Scholar 

  18. Naylor, J.A., Green, P.M., Rizza, C.R. & Gianelli, F. Analysis of factor VIII mRNA reveals defects in everyone of 28 haemophilia A patients. Hum. Molec. Genet. 2, 11–17 (1993).

    Article  CAS  Google Scholar 

  19. Gibson, R.A., Hajianpour, A., Murer-Orlando, M., Buchwald, M. & Mathew, C.G. A nonsense mutation and exon skipping in the Fanconi anaemia group C gene. Hum. Molec. Genet. 2, 797–799 (1993).

    Article  CAS  Google Scholar 

  20. Bach, G., Moskowitz, S.M., Phuong, T.T., Matynia, A. & Neufeld, E.F. Molecular analysis of Hurler syndrome in Druze and Muslim Arab patients in Israel: multiple allelic mutations of the IDUA gene in a small geographic area. Am. J. Hum. Genet. 53, 330–338 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pereira, L. et al. Genomic organization of the sequence coding for fibrillin, thedefective gene product in Marfan syndrome. Hum. Molec Genet. 2, 961–968 (1993).

    Article  CAS  Google Scholar 

  22. Dietz, H.C. et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 17, 468–475 (1993).

    Article  CAS  Google Scholar 

  23. Mitchell, G.A. et al. Human ornithine δ-aminotransferase: cDNA cloning and analysis of the structural gene. J. Biol. Chem. 263, 14288–14295 (1988).

    CAS  PubMed  Google Scholar 

  24. Black, D.L. Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-nueronal cells? Genes Dev. 5, 389–402 (1991).

    Article  CAS  Google Scholar 

  25. Daar, I.O. & Maquat, L.E. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Molec. Cell. Biol. 8, 802–813 (1988).

    Article  CAS  Google Scholar 

  26. Urlaub, G., Mitchell, P.J., Ciudad, C.J. & LA Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Molec. Cell. Biol. 9, 2868–2880 (1989).

    Article  CAS  Google Scholar 

  27. Cheng, J., Fogel-Petrovic, M. & Maquat, L.E. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate isomerase mRNA. Molec. Cell. Biol. 10, 5215–5225 (1990).

    Article  CAS  Google Scholar 

  28. Baserga, S.J. & Benz, E.J. Jr. B-globin nonsense mutation: deficient accumulation of mRNA occurs despite normal cytoplasmic stability. Proc. Natl. Acad. Sci. U.S.A. 89, 2935–2939 (1992).

    Article  CAS  Google Scholar 

  29. Cheng, J. & Maquat, L.E. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Molec. Cell. Biol. 13, 1892–1902 (1993).

    Article  CAS  Google Scholar 

  30. Belgrader, P., Cheng, J. & Maquat, L.E. Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc. Natl. Acad. Sci. U.S.A. 90, 482–486 (1993).

    Article  CAS  Google Scholar 

  31. Carothers, A.M., Urlaub, G., Greenberger, D. & Chasin, L.A. Splicing mutants and their second-life suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells. Molec. Cell. Biol. 13, 5085–5098 (1993).

    Article  CAS  Google Scholar 

  32. Kessler, O., Jiang, Y. & Chasin, L.A. Order of intron removal during splicing of endogenous adenine phosphoribosyltranferase and dihydrofolate reductase pre-mRNA. Molec. Cell. Biol. 13, 6211–6222 (1993).

    Article  CAS  Google Scholar 

  33. Fisher, C.W. et al. Occurrence of a 2-bp (AT) deletion allele and a nonsense (G-to-T) mutant allele at E2 (DBT) locus of six patients with Maple Syrup Urine Disease: Multiple-exon skipping as a secondary effect of the mutations. Am. J. Hum. Genet. 52, 414–424 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hawkins, J.D. A survey on intron and exon lengths. Nucl. Acids Res. 16, 9893–9908 (1988).

    Article  CAS  Google Scholar 

  35. Dietz, H.C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).

    Article  CAS  Google Scholar 

  36. Dietz, H.C. et al. Marfan phenotype variability in a family segregating a missense mutation in the epidermal growth factor-like motif of the fibrillin gene. J. clin. Invest. 89, 1674–1680 (1992).

    Article  CAS  Google Scholar 

  37. Dietz, H.C. et al. Clustering of fibrillin (FBN1) missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domains. Hum. Mutat. 1, 366–374 (1992).

    Article  CAS  Google Scholar 

  38. Hamosh, A. et al. Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutation R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J. clin. Invest. 88, 1880–1885 (1991).

    Article  CAS  Google Scholar 

  39. Deng, W.P. & Nickoloff, J.A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Analyt. Biochem. 200, 81–88 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, H., Kendzior, R. Maintenance of an open reading frame as an additional level of scrutiny during splice site selection. Nat Genet 8, 183–188 (1994). https://doi.org/10.1038/ng1094-183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1094-183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing