Non–invasive liposome–mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice

A Correction to this article was published on 01 November 1993


We report gene transfer to the Edinburgh insertional mutant mouse (cf/cf), delivering CFTR cDNA–liposome complexes into the airways by nebulization. We show full restoration of cAMP related chloride responses in some animals and demonstrate, in the same tissues, human CFTR cDNA expression. Overall, a range of correction was seen with restoration of about 50% of the deficit between wild type mice and untreated cf/cf controls. We report modest correction in the intestinal tract following direct instillation and provide initial encouraging safety data for both the respiratory and intestinal tract following the liposome mediated gene delivery. The non–viral nature and potentially lower immunogenicity of DNA–liposomes suggest that this may offer a therapeutic alternative to adenoviral therapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Quinton, P.M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 4, 2709–2717 (1990).

    CAS  Article  Google Scholar 

  2. 2

    FitzSimmons, S.C. The changing epidemiology of cystic fibrosis. J. Pediatr. 122, 1–9 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterisation of complementary DNA. Science 245, 1066–1073 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Rich, D.P. et al. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway cells. Nature 347, 358–363 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Drumm, M.L. et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62, 1227–1233 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Dorin, J.R. et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359, 211–215 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Snouwaert, J.N. et al. An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Ratcliff, R. et al. Production of a servere cystic fibrosis mutation in mice by gene targeting. Nature Genet. 4, 35–41 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Knowles, M., Gatzy, J. & Boucher, R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. New Engl. J. Med. 305, 1489–1495 (1981).

    CAS  Article  Google Scholar 

  10. 10

    Dorin, J.R. et al. Successful targeting of the mouse cystic fibrosis transmembrane conductance regulator gene in embryonal stem cells. Trans. Res. 1, 101–105 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Hyde, S.C. et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362, 250–255 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Boucher, R.C. et al. Sodium absorption in mammalian airways. In Fluid and electrolyte abnormalities in exochne glands in cystic fibrosis. (eds Quinton, P.M., Martinez, J.R. & Hopfer, U.) 271–287 (San Francisco Press, San Francisco, 1982).

    Google Scholar 

  13. 13

    Felgner, P.L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. natn. Acad. Sci. U.S.A 87, 7413–7417 (1987).

    Article  Google Scholar 

  14. 14

    MacGregor, G.R. & Caskey, C.T. Construction of plasmids that express E coli β-galactosidase in mammalian cells. Nucl. Acids Res. 17, 2365 (1989).

    CAS  Article  Google Scholar 

  15. 15

    Nabel, G.J. et al. Clinical protocol; immunotherapy of malignancy by in vivo gene transfer into tumors. Hum. Gene Ther. 3, 399–410 (1992).

    Article  Google Scholar 

  16. 16

    Yoshimura, K. et al. Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after In vivo intratracheal plasmid-mediated gene transfer. Nucl. Acids Res. 20, 3233–3240 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Hazinski, T.A. Liposome-mediated transfer of fusion genes to the intact lung. Sem. Perinat. 16, 200–204 (1992).

    CAS  Google Scholar 

  19. 19

    Stribling, R., Brunette, E., Liggitt, D., Gaensler, K. & Debs, R. Aerosol gene delivery in vivo. Proc. natn Acad. Sci. U.S.A 89, 11277–11281 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Alton, E.W.F.W. et al. Bioelectric properties of cystic fibrosis airways obtained at heart-lung transplantation. Thorax 47, 1010–1014 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Welsh, M.J. Abnormal regulation of ion channels in cystic fibrosis epithelia. FASEB J. 4, 2718–2725 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Porteous, D.J. & Dorin, J.R. Gene Therapy for Cystic Fibrosis - where and when?. Hum. molec. Gen. 2, 211–212 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Alton, E.W.F.W. et al. Nasal potential difference: a clinical diagnostic test for cystic fibrosis. Eur. Respir. J. 3, 922–926 (1990).

    CAS  PubMed  Google Scholar 

  24. 24

    Geddes, D.M. & Graham, A. Cystic Fibrosis. In Recent Advances in Respiratory Medicine. (ed. D.M. Mitchell) 203–227 (Churchill Livingstone, 1991).

    Google Scholar 

  25. 25

    Mentz, W.M. et al. Deposition, clearance, and effects of aerosolized amiloride in sheep airways. Am. Rev. resp. Dis. 134, 938–943 (1986).

    CAS  Article  Google Scholar 

  26. 26

    Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  27. 27

    Feldman, C. et al. Pneumolysin induces the salient histologic features of Pneumococcal infection in the rat lung in vivo. Am. J. respir. Cell molec. Biol. 5, 416–423 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Gao, X. & Huang, L. A novel cat ionic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Comm. 179, 280–285 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Whitsett, J.A. et al. Human cystic fibrosis transmembrane conductance regulator directed to respiratory epithelial cells of transgenic mice. Nature Genet. 2, 13–20 (1992).

    CAS  Article  Google Scholar 

  30. 30

    Dorin, J.R., Inglis, J.D. & Porteous, D.J. Selection for precise chromosomal targeting of a dominant marker by homologous recombination. Science 243, 1357–1360 (1989).

    CAS  Article  Google Scholar 

  31. 31

    Yamaguchi, M. et al. Molecular cloning and structural analysis of mouse gene and pseudogenes for proliferating cell nuclear antigen. Nucl. Acids Res. 19, 2403–2408 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Tata, F. et al. Cloning of the mouse homolog of the human cystic fibrosis transmembrane conductance regulator gene. Genomics 10, 301–307 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Widdicombe, J.H., Welsh, M.J. & Finkbeiner, W.E. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc. natn. Acad. Sci. U.S.A 82, 6167–6171 (1985).

    CAS  Article  Google Scholar 

  34. 34

    Smith, S.N., Alton, E.W.F.W. & Geddes, D.M. Ion transport characteristics of the murine trachea and caecum. Clin. Sci. 82, 667–672 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alton, E., Middleton, P., Caplen, N. et al. Non–invasive liposome–mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat Genet 5, 135–142 (1993).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing