Molecular evolution meets the genomics revolution

Article metrics

Abstract

Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Timeline of developments in bioinformatics, genomics and molecular evolution, charted against the accumulation of DNA sequence information in GenBank, which was established in 1982.
Figure 2: Variation in base composition around the genome of Campylobacter jejuni.
Figure 3: Frequency of deletions and insertions in bacterial genomes.

References

  1. 1

    Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267, 275–276 (1977).

  2. 2

    Fitch, W.M. Estimating the total number of nucleotide substitutions since the common ancestor of a pair of genes: comparison of several methods and three β hemoglobin messenger RNAs. J. Mol. Evol. 16, 153–209 (1980).

  3. 3

    Li, W.-H., Gojobori, T. & Nei, M. Pseudogenes as a paradigm of neutral evolution. Nature 292, 237–239 (1981).

  4. 4

    Ohno, S. Evolution by Gene Duplication (George Allen and Unwin, London, 1970).

  5. 5

    Betran, E., Wang, W., Jin, L. & Long, M. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol. 19, 654–663 (2002).

  6. 6

    Long, M. Evolution of novel genes. Curr. Opin. Genet. Dev. 11, 673–680 (2001).

  7. 7

    Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

  8. 8

    Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

  9. 9

    Wolfe, K.H. Yesterday's polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333–341 (2001).

  10. 10

    McLysaght, A., Hokamp, K. & Wolfe, K.H. Extensive genomic duplication during early chordate evolution. Nat. Genet. 31, 200–204 (2002).

  11. 11

    Gu, X., Wang, Y. & Gu, J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat. Genet. 31, 205–209 (2002).

  12. 12

    Abi-Rached, L., Gilles, A., Shiina, T., Pontarotti, P. & Inoko, H. Evidence of en bloc duplication in vertebrate genomes. Nat. Genet. 31, 100–105 (2002).

  13. 13

    Kashkush, K., Feldman, M. & Levy, A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659 (2002).

  14. 14

    Comai, L. et al. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12, 1551–1568 (2000).

  15. 15

    Lee, H.S. & Chen, Z.J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc. Natl. Acad. Sci. USA 98, 6753–6758 (2001).

  16. 16

    Adams, K.L., Daley, D.O., Qiu, Y.-L., Whelan, J. & Palmer, J.D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408, 354–357 (2000).

  17. 17

    Adams, K.L., Qiu, Y.L., Stoutemyer, M. & Palmer, J.D. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl. Acad. Sci. USA 99, 9905–9912 (2002).

  18. 18

    Kadowaki, K., Kubo, N., Ozawa, K. & Hirai, A. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. EMBO J. 15, 6652–6661 (1996).

  19. 19

    Kubo, N., Harada, K., Hirai, A. & Kadowaki, K. A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc. Natl. Acad. Sci. USA 96, 9207–9211 (1999).

  20. 20

    Courseaux, A. & Nahon, J.L. Birth of two chimeric genes in the Hominidae lineage. Science 291, 1293–1297 (2001).

  21. 21

    Eichler, E.E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).

  22. 22

    Long, M. & Langley, C.H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95 (1993).

  23. 23

    Wang, W., Brunet, F.G., Nevo, E. & Long, M. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99, 4448–4453 (2002).

  24. 24

    Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H. Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).

  25. 25

    Pickeral, O.K., Makalowski, W., Boguski, M.S. & Boeke, J.D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411–415 (2000).

  26. 26

    Korneev, S. & O'Shea, M. Evolution of nitric oxide synthase regulatory genes by DNA inversion. Mol. Biol. Evol. 19, 1228–1233 (2002).

  27. 27

    Johnson, M.E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

  28. 28

    Lipovich, L., Hughes, A.L., King, M.C., Abkowitz, J.L. & Quigley, J.G. Genomic structure and evolutionary context of the human feline leukemia virus subgroup C receptor (hFLVCR) gene: evidence for block duplications and de novo gene formation within duplicons of the hFLVCR locus. Gene 286, 203–213 (2002).

  29. 29

    Chen, L., DeVries, A.L. & Cheng, C.H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 94, 3811–3816 (1997).

  30. 30

    Chen, L., DeVries, A.L. & Cheng, C.H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc. Natl. Acad. Sci. USA 94, 3817–3822 (1997).

  31. 31

    Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852 (2001).

  32. 32

    McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001).

  33. 33

    Porwollik, S., Wong, R.M. & McClelland, M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99, 8956–8961 (2002).

  34. 34

    Perna, N.T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001).

  35. 35

    Malpertuy, A. et al. Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes. FEBS Lett. 487, 113–121 (2000).

  36. 36

    McDonald, J.H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

  37. 37

    Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).

  38. 38

    Suzuki, Y. & Gojobori, T. A method for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 16, 1315–1328 (1999).

  39. 39

    Suzuki, Y. & Nei, M. Reliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 18, 2179–2185 (2001).

  40. 40

    Yang, Z. & Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917 (2002).

  41. 41

    Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

  42. 42

    Tanaka, T. & Nei, M. Positive darwinian selection observed at the variable-region genes of immunoglobulins. Mol. Biol. Evol. 6, 447–459 (1989).

  43. 43

    Hughes, A.L., Ota, T. & Nei, M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol. Biol. Evol. 7, 515–524 (1990).

  44. 44

    Riley, M.A. Positive selection for colicin diversity in bacteria. Mol. Biol. Evol. 10, 1048–1059 (1993).

  45. 45

    Zhang, J., Rosenberg, H.F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl. Acad. Sci. USA 95, 3708–3713 (1998).

  46. 46

    Zhang, J., Zhang, Y.P. & Rosenberg, H.F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30, 411–415 (2002).

  47. 47

    Hughes, A.L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics 127, 345–353 (1991).

  48. 48

    Hughes, A.L. Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol. Biol. Evol. 9, 381–393 (1992).

  49. 49

    Bonhoeffer, S., Holmes, E.C. & Nowak, M.A. Causes of HIV diversity. Nature 376, 125 (1995).

  50. 50

    Yamaguchi-Kabata, Y. & Gojobori, T. Reevaluation of amino acid variability of the human immunodeficiency virus type 1 gp120 envelope glycoprotein and prediction of new discontinuous epitopes. J. Virol. 74, 4335–4350 (2000).

  51. 51

    Lee, Y.H., Ota, T. & Vacquier, V.D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12, 231–238 (1995).

  52. 52

    Metz, E.C. & Palumbi, S.R. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13, 397–406 (1996).

  53. 53

    Palumbi, S.R. All males are not created equal: fertility differences depend on gamete recognition polymorphisms in sea urchins. Proc. Natl. Acad. Sci. USA 96, 12632–12637 (1999).

  54. 54

    Aguade, M., Miyashita, N. & Langley, C.H. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics 132, 755–770 (1992).

  55. 55

    Tsaur, S.C. & Wu, C.I. Positive selection and the molecular evolution of a gene of male reproduction, Acp26Aa of Drosophila. Mol. Biol. Evol. 14, 544–549 (1997).

  56. 56

    Tsaur, S.C., Ting, C.T. & Wu, C.I. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol. Biol. Evol. 15, 1040–1046 (1998).

  57. 57

    Swanson, W.J., Clark, A.G., Waldrip-Dail, H.M., Wolfner, M.F. & Aquadro, C.F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl. Acad. Sci. USA 98, 7375–7379 (2001).

  58. 58

    Maston, G.A. & Ruvolo, M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol. Biol. Evol. 19, 320–335 (2002).

  59. 59

    Messier, W. & Stewart, C.B. Episodic adaptive evolution of primate lysozymes. Nature 385, 151–154 (1997).

  60. 60

    Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

  61. 61

    Smith, N.G. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002).

  62. 62

    Fay, J.C., Wyckoff, G.J. & Wu, C.I. Positive and negative selection on the human genome. Genetics 158, 1227–1234 (2001).

  63. 63

    Fay, J.C., Wyckoff, G.J. & Wu, C.I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026 (2002).

  64. 64

    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

  65. 65

    Roberts, J.D., Izuta, S., Thomas, D.C. & Kunkel, T.A. Mispair-, site-, and strand-specific error rates during simian virus 40 origin-dependent replication in vitro with excess deoxythymidine triphosphate. J. Biol. Chem. 269, 1711–1717 (1994).

  66. 66

    Fijalkowska, I.J., Jonczyk, P., Tkaczyk, M.M., Bialoskorska, M. & Schaaper, R.M. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc. Natl. Acad. Sci. USA 95, 10020–10025 (1998).

  67. 67

    Francino, M.P. & Ochman, H. Strand asymmetries in DNA evolution. Trends Genet. 13, 240–245 (1997).

  68. 68

    Frank, A.C. & Lobry, J.R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238, 65–77 (1999).

  69. 69

    Lobry, J.R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996).

  70. 70

    Tillier, E.R. & Collins, R.A. The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J. Mol. Evol. 50, 249–257 (2000).

  71. 71

    Rocha, E.P. & Danchin, A. Ongoing evolution of strand composition in bacterial genomes. Mol. Biol. Evol. 18, 1789–1799 (2001).

  72. 72

    Jermiin, L.S., Graur, D. & Crozier, R.H. Evidence from analyses of intergenic regions for strand-specific directional mutation pressure in metazoan mitochondrial DNA. Mol. Biol. Evol. 12, 558–563 (1995).

  73. 73

    Perna, N.T. & Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).

  74. 74

    Tanaka, M. & Ozawa, T. Strand asymmetry in human mitochondrial DNA mutations. Genomics 22, 327–335 (1994).

  75. 75

    Reyes, A., Gissi, C., Pesole, G. & Saccone, C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol. Biol. Evol. 15, 957–966 (1998).

  76. 76

    Francino, M.P. & Ochman, H. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol. Biol. Evol. 18, 1147–1150 (2001).

  77. 77

    Beletskii, A. & Bhagwat, A.S. Correlation between transcription and C to T mutations in the non-transcribed DNA strand. Biol. Chem. 379, 549–551 (1998).

  78. 78

    Karlin, S., Campbell, A.M. & Mrazek, J. Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32, 185–225 (1998).

  79. 79

    Francino, M.P. & Ochman, H. Strand symmetry around the β-globin origin of replication in primates. Mol. Biol. Evol. 17, 416–422 (2000).

  80. 80

    Gierlik, A., Kowalczuk, M., Mackiewicz, P., Dudek, M.R. & Cebrat, S. Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J. Theor. Biol. 202, 305–314 (2000).

  81. 81

    Mrázek, J. & Karlin, S. Strand compositional asymmetry in bacterial and large viral genomes. Proc. Natl. Acad. Sci. USA 95, 3720–3725 (1998).

  82. 82

    McLean, M.J., Wolfe, K.H. & Devine, K.M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47, 691–696 (1998).

  83. 83

    Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215 (2000).

  84. 84

    McInerney, J.O. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 95, 10698–10703 (1998).

  85. 85

    Lafay, B. et al. Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutation biases. Nucleic Acids Res. 27, 1642–1649 (1999).

  86. 86

    Tillier, E.R. & Collins, R.A. Replication orientation affects the rate and direction of bacterial gene evolution. J. Mol. Evol. 51, 459–463 (2000).

  87. 87

    Szczepanik, D. et al. Evolution rates of genes on leading and lagging DNA strands. J. Mol. Evol. 52, 426–433 (2001).

  88. 88

    Haldane, J.B.S. The rate of spontaneous mutation of a human gene. J. Genet. 31, 317–326 (1935).

  89. 89

    Miyata, T., Hayashida, H., Kuma, K., Mitsuyasu, K. & Yasunaga, T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52, 863–867 (1987).

  90. 90

    Li, W.H., Ellsworth, D.L., Krushkal, J., Chang, B.H. & Hewett-Emmett, D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phyl. Evol. 5, 182–187 (1996).

  91. 91

    McVean, G.T. & Hurst, L.D. Evidence for a selectively favourable reduction in the mutation rate of the X chromosome. Nature 386, 388–392 (1997).

  92. 92

    Ellegren, H. & Fridolfsson, A.K. Male-driven evolution of DNA sequences in birds. Nature Genet. 17, 182–184 (1997).

  93. 93

    Makova, K.D. & Li, W.H. Strong male-driven evolution of DNA sequences in humans and apes. Nature 416, 624–626 (2002).

  94. 94

    Filipski, J. Why the rate of silent codon substitutions is variable within a vertebrate's genome. J. Theor. Biol. 134, 159–164 (1988).

  95. 95

    Wolfe, K.H., Sharp, P.M. & Li, W.H. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989).

  96. 96

    Matassi, G., Sharp, P.M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786–791 (1999).

  97. 97

    Gu, Z., Wang, H., Nekrutenko, A. & Li, W.H. Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. Gene 259, 81–88 (2000).

  98. 98

    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 803–808 (2002).

  99. 99

    Lercher, M.J., Williams, E.J. & Hurst, L.D. Local similarity in evolutionary rates extends over whole chromosomes in human-rodent and mouse-rat comparisons: implications for understanding the mechanistic basis of the male mutation bias. Mol. Biol. Evol. 18, 2032–2039 (2001).

  100. 100

    Ebersberger, I., Metzler, D., Schwarz, C. & Paabo, S. Genomewide comparison of DNA sequences between humans and chimpanzees. Am. J. Hum. Genet. 70, 1490–1497 (2002).

  101. 101

    Bielawski, J.P., Dunn, K.A. & Yang, Z. Rates of nucleotide substitution and mammalian nuclear gene evolution. Approximate and maximum-likelihood methods lead to different conclusions. Genetics 156, 1299–1308 (2000).

  102. 102

    Smith, N.G. & Hurst, L.D. The effect of tandem substitutions on the correlation between synonymous and nonsynonymous rates in rodents. Genetics 153, 1395–1402 (1999).

  103. 103

    Nekrutenko, A. & Li, W.H. Assessment of compositional heterogeneity within and between eukaryotic genomes. Genome Res. 10, 1986–1995 (2000).

  104. 104

    Strathern, J.N., Shafer, B.K. & McGill, C.B. DNA synthesis errors associated with double-strand-break repair. Genetics 140, 965–972 (1995).

  105. 105

    Perry, J. & Ashworth, A. Evolutionary rate of a gene affected by chromosomal position. Curr. Biol. 9, 987–989 (1999).

  106. 106

    Gerton, J.L. et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 11383–11390 (2000).

  107. 107

    Birdsell, J.A. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol. Biol. Evol. 19, 1181–1197 (2002).

  108. 108

    Takano-Shimizu, T. Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. Mol. Biol. Evol. 18, 606–619 (2001).

  109. 109

    Brown, T.C. & Jiricny, J. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54, 705–711 (1988).

  110. 110

    Fullerton, S.M., Bernardo Carvalho, A. & Clark, A.G. Local rates of recombination are positively correlated with GC content in the human genome. Mol. Biol. Evol. 18, 1139–1142 (2001).

  111. 111

    Blumenthal, T. et al. A global analysis of Caenorhabditis elegans operons. Nature 417, 851–854 (2002).

  112. 112

    von Mering, C. & Bork, P. Teamed up for transcription. Nature 417, 797–798 (2002).

  113. 113

    Wang, P.J., McCarrey, J.R., Yang, F. & Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27, 422–426 (2001).

  114. 114

    Roy, P.J., Stuart, J.M., Lund, J. & Kim, S.K. Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975–979 (2002).

  115. 115

    Spellman, P.T. & Rubin, G.M. Evidence for large domains of similarly expressed genes in the Drosophila genome. J. Biol. 1, 5 (2002).

  116. 116

    Cohen, B.A., Mitra, R.D., Hughes, J.D. & Church, G.M. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat. Genet. 26, 183–186 (2000).

  117. 117

    Kruglyak, S. & Tang, H. Regulation of adjacent yeast genes. Trends Genet. 16, 109–111 (2000).

  118. 118

    Mannila, H., Patrikainen, A., Seppanen, J.K. & Kere, J. Long-range control of expression in yeast. Bioinformatics 18, 482–483 (2002).

  119. 119

    Lercher, M.J., Urrutia, A.O. & Hurst, L.D. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat. Genet. 31, 180–183 (2002).

  120. 120

    Dehal, P. et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293, 104–111 (2001).

  121. 121

    Mural, R.J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296, 1661–1671 (2002).

  122. 122

    Seoighe, C. et al. Prevalence of small inversions in yeast gene order evolution. Proc. Natl. Acad. Sci. USA 97, 14433–14437 (2000).

  123. 123

    Coghlan, A. & Wolfe, K.H. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res. 12, 857–867 (2002).

  124. 124

    Gilley, J. & Fried, M. Extensive gene order differences within regions of conserved synteny between the Fugu and human genomes: implications for chromosomal evolution and the cloning of disease genes. Hum. Mol. Genet. 8, 1313–1320 (1999).

  125. 125

    SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43–45 (1998).

  126. 126

    Petrov, D.A., Sangster, T.A., Johnston, J.S., Hartl, D.L. & Shaw, K.L. Evidence for DNA loss as a determinant of genome size. Science 287, 1060–1062 (2000).

  127. 127

    Bensasson, D., Petrov, D.A., Zhang, D.X., Hartl, D.L. & Hewitt, G.M. Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol. Biol. Evol. 18, 246–253 (2001).

  128. 128

    Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091–1096 (2001).

  129. 129

    Gilson, P.R. & McFadden, G.I. The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proc. Natl. Acad. Sci. USA 93, 7737–7742 (1996).

  130. 130

    Gilson, P.R. & McFadden, G.I. Jam packed genomes—a preliminary, comparative analysis of nucleomorphs. Genetica 115, 13–28 (2002).

  131. 131

    Peyret, P. et al. Sequence and analysis of chromosome I of the amitochondriate intracellular parasite Encephalitozoon cuniculi (Microspora). Genome Res. 11, 198–207 (2001).

  132. 132

    Katinka, M.D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).

  133. 133

    Graur, D. & Li, W.-H. Fundamentals of Molecular Evolution 443 (Sinauer, Sunderland, MA, 1999).

  134. 134

    Zipkas, D. & Riley, M. Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 1354–1358 (1975).

  135. 135

    Riley, M. & Labedan, B. Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. J. Mol. Biol. 268, 857–868 (1997).

  136. 136

    Herdman, M. The evolution of bacterial genomes. In The Evolution of Genome Size (ed. Cavalier-Smith, T.) 37–68 (John Wiley and Sons, Chichester 1985).

  137. 137

    Andersson, S.G. & Kurland, C.G. Reductive evolution of resident genomes. Trends Microbiol. 6, 263–268 (1998).

  138. 138

    Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

  139. 139

    Ochman, H., Lawrence, J.G. & Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

  140. 140

    Jordan, I.K., Makarova, K.S., Spouge, J.L., Wolf, Y.I. & Koonin, E.V. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res. 11, 555–565 (2001).

  141. 141

    Bentley, S.D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

  142. 142

    Mira, A., Ochman, H. & Moran, N.A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 589–596 (2001).

  143. 143

    Moran, N.A. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586 (2002).

  144. 144

    Maniloff, J. The minimal cell genome: 'on being the right size'. Proc. Natl. Acad. Sci. USA 93, 10004–10006 (1996).

  145. 145

    Andersson, J.O. & Andersson, S.G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 18, 829–839 (2001).

  146. 146

    Clark, M.A., Baumann, L., Thao, M.L., Moran, N.A. & Baumann, P. Degenerative minimalism in the genome of a psyllid endosymbiont. J. Bacteriol. 183, 1853–1861 (2001).

  147. 147

    Andersson, S.G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140 (1998).

  148. 148

    Koonin, E.V. How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet. 1, 99–116 (2000).

  149. 149

    Souciet, J. et al. Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett. 487, 3–12 (2000).

  150. 150

    Pennisi, E. Chimps and fungi make genome 'top six'. Science 296, 1589–1591 (2002).

  151. 151

    Thomas, J.W. & Touchman, J.W. Vertebrate genome sequencing: building a backbone for comparative genomics. Trends Genet. 18, 104–108 (2002).

  152. 152

    Markert, C.L. Cellular differentiation—an expression of differential gene function. In Congenital Malformations 163–174 (International Medical Congress, New York, 1964).

  153. 153

    Ferris, S.D. & Whitt, G.S. Evolution of the differential regulation of duplicate genes after polyploidization. J. Mol. Evol. 12, 267–317 (1979).

  154. 154

    Wagner, A. Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. Proc. Natl. Acad. Sci. USA 97, 6579–6584 (2000).

  155. 155

    Li, W.-H. Molecular Evolution (Sinauer, Sunderland, MA, 1997).

  156. 156

    Makalowski, W. & Boguski, M.S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc. Natl. Acad. Sci. USA 95, 9407–9412 (1998).

  157. 157

    Gu, Z., Nicolae, D., Lu, H.H.-S. & Li, W.-H. Rapid divergence in expression between duplicate genes inferred from microarray gene expression data. Trends Genet. 18, 609–613 (2002).

  158. 158

    Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001).

  159. 159

    Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C. & Feldman, M.W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

  160. 160

    Hirsh, A.E. & Fraser, H.B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

  161. 161

    Papp, B., Pal, C. & Hurst, L.D. Gene dispensibility does not determine the rate of evolution. Nature (in the press).

  162. 162

    Wilson, A.C., Carlson, S.S. & White, T., J. Biochemical evolution. Annu. Rev. Biochem. 46, 573–639 (1977).

  163. 163

    Hughes, A.L. The evolution of the type I interferon gene family in mammals. J. Mol. Evol. 41, 539–548 (1995).

  164. 164

    Endo, T., Ikeo, K. & Gojobori, T. Large-scale search for genes on which positive selection may operate. Mol. Biol. Evol. 13, 685–690 (1996).

  165. 165

    Goodwin, R.L., Baumann, H. & Berger, F.G. Patterns of divergence during evolution of α1-proteinase inhibitors in mammals. Mol. Biol. Evol. 13, 346–358 (1996).

  166. 166

    Hughes, A.L. & Yeager, M. Coordinated amino acid changes in the evolution of mammalian defensins. J. Mol. Evol. 44, 675–682 (1997).

  167. 167

    Kitano, T., Sumiyama, K., Shiroishi, T. & Saitou, N. Conserved evolution of the Rh50 gene compared to its homologous Rh blood group gene. Biochem. Biophys. Res. Commun. 249, 78–85 (1998).

  168. 168

    Wyckoff, G.J., Wang, W. & Wu, C.I. Rapid evolution of male reproductive genes in the descent of man. Nature 403, 304–309 (2000).

  169. 169

    Qi, C.F. et al. Molecular phylogeny of Fv1. Mamm. Genome 9, 1049–1055 (1998).

  170. 170

    Ford, M.J., Thornton, P.J. & Park, L.K. Natural selection promotes divergence of transferrin among salmonid species. Mol. Ecol. 8, 1055–1061 (1999).

  171. 171

    Singhania, N.A. et al. Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice. J. Mol. Evol. 49, 721–728 (1999).

  172. 172

    Bishop, J.G., Dean, A.M. & Mitchell-Olds, T. Rapid evolution in plant chitinases: molecular targets of selection in plant–pathogen coevolution. Proc. Natl. Acad. Sci. USA 97, 5322–5327 (2000).

  173. 173

    Baum, J., Ward, R.H. & Conway, D.J. Natural selection on the erythrocyte surface. Mol. Biol. Evol. 19, 223–229 (2002).

  174. 174

    Zhang, J. & Nei, M. Positive selection in the evolution of mammalian interleukin-2 genes. Mol. Biol. Evol. 17, 1413–1416 (2000).

  175. 175

    Hughes, M.K. & Hughes, A.L. Natural selection on Plasmodium surface proteins. Mol. Biochem. Parasitol. 71, 99–113 (1995).

  176. 176

    Smith, N.H., Maynard Smith, J. & Spratt, B.G. Sequence evolution of the porB gene of Neisseria gonorrhoeae and Neisseria meningitidis: evidence of positive Darwinian selection. Mol. Biol. Evol. 12, 363–370 (1995).

  177. 177

    Baric, R.S., Yount, B., Hensley, L., Peel, S.A. & Chen, W. Episodic evolution mediates interspecies transfer of a murine coronavirus. J. Virol. 71, 1946–1955 (1997).

  178. 178

    Fitch, W.M., Bush, R.M., Bender, C.A. & Cox, N.J. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc. Natl. Acad. Sci. USA 94, 7712–7718 (1997).

  179. 179

    Wu, J.C. et al. Recombination of hepatitis D virus RNA sequences and its implications. Mol. Biol. Evol. 16, 1622–1632 (1999).

  180. 180

    Zanotto, P.M., Kallas, E.G., de Souza, R.F. & Holmes, E.C. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics 153, 1077–1089 (1999).

  181. 181

    Haydon, D.T., Bastos, A.D., Knowles, N.J. & Samuel, A.R. Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157, 7–15 (2001).

  182. 182

    Aguade, M. Positive selection drives the evolution of the Acp29AB accessory gland protein in Drosophila. Genetics 152, 543–551 (1999).

  183. 183

    Hellberg, M.E. & Vacquier, V.D. Rapid evolution of fertilization selectivity and lysin cDNA sequences in teguline gastropods. Mol. Biol. Evol. 16, 839–848 (1999).

  184. 184

    Swanson, W.J., Aquadro, C.F. & Vacquier, V.D. Polymorphism in abalone fertilization proteins is consistent with the neutral evolution of the egg's receptor for lysin (VERL) and positive darwinian selection of sperm lysin. Mol. Biol. Evol. 18, 376–383 (2001).

  185. 185

    Pamilo, P. & O'Neill, R.J. Evolution of the Sry genes. Mol. Biol. Evol. 14, 49–55 (1997).

  186. 186

    Vacquier, V.D., Swanson, W.J. & Lee, Y.H. Positive Darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J. Mol. Evol. 44, S15–22 (1997).

  187. 187

    Ishimizu, T. et al. Identification of regions in which positive selection may operate in S-RNase of Rosaceae: implication for S-allele-specific recognition sites in S-RNase. FEBS Lett. 440, 337–342 (1998).

  188. 188

    Karn, R.C. & Nachman, M.W. Reduced nucleotide variability at an androgen-binding protein locus (Abpa) in house mice: evidence for positive natural selection. Mol. Biol. Evol. 16, 1192–1197 (1999).

  189. 189

    Rooney, A.P. & Zhang, J. Rapid evolution of a primate sperm protein: relaxation of functional constraint or positive Darwinian selection? Mol. Biol. Evol. 16, 706–710 (1999).

  190. 190

    Hellberg, M.E., Moy, G.W. & Vacquier, V.D. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein. Mol. Biol. Evol. 17, 458–466 (2000).

  191. 191

    Eanes, W.F., Kirchner, M. & Yoon, J. Evidence for adaptive evolution of the G6pd gene in the Drosophila melanogaster and Drosophila simulans lineages. Proc. Natl. Acad. Sci. USA 90, 7475–7479 (1993).

  192. 192

    Nakashima, K. et al. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc. Natl. Acad. Sci. USA 92, 5605–5609 (1995).

  193. 193

    Shields, D.C., Harmon, D.L. & Whitehead, A.S. Evolution of hemopoietic ligands and their receptors. Influence of positive selection on correlated replacements throughout ligand and receptor proteins. J. Immunol. 156, 1062–1070 (1996).

  194. 194

    Wallis, M. The molecular evolution of vertebrate growth hormones: a pattern of near-stasis interrupted by sustained bursts of rapid change. J. Mol. Evol. 43, 93–100 (1996).

  195. 195

    Liu, J.C., Makova, K.D., Adkins, R.M., Gibson, S. & Li, W.H. Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol. Biol. Evol. 18, 945–953 (2001).

  196. 196

    Sutton, K.A. & Wilkinson, M.F. Rapid evolution of a homeodomain: evidence for positive selection. J. Mol. Evol. 45, 579–588 (1997).

  197. 197

    Ward, T.J., Honeycutt, R.L. & Derr, J.N. Nucleotide sequence evolution at the κ-casein locus: evidence for positive selection within the family Bovidae. Genetics 147, 1863–1872 (1997).

  198. 198

    Wu, W., Goodman, M., Lomax, M.I. & Grossman, L.I. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates. J. Mol. Evol. 44, 477–491 (1997).

  199. 199

    Bargelloni, L., Marcato, S. & Patarnello, T. Antarctic fish hemoglobins: evidence for adaptive evolution at subzero temperature. Proc. Natl. Acad. Sci. USA 95, 8670–8675 (1998).

  200. 200

    Ting, C.T., Tsaur, S.C., Wu, M.L. & Wu, C.I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501–1504 (1998).

  201. 201

    Duda, T.F., Jr. & Palumbi, S.R. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc. Natl. Acad. Sci. USA 96, 6820–6823 (1999).

  202. 202

    Schmidt, T.R., Goodman, M. & Grossman, L.I. Molecular evolution of the COX7A gene family in primates. Mol. Biol. Evol. 16, 619–626 (1999).

  203. 203

    Huttley, G.A. et al. Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Australian Breast Cancer Family Study. Nat. Genet. 25, 410–413 (2000).

  204. 204

    Schmidt, P.S., Duvernell, D.D. & Eanes, W.F. Adaptive evolution of a candidate gene for aging in Drosophila. Proc. Natl. Acad. Sci. USA 97, 10861–10865 (2000).

  205. 205

    Ding, Y.C. et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. USA 99, 309–314 (2002).

  206. 206

    Huang, W., Chang, B.H., Gu, X., Hewett-Emmett, D. & Li, W.H. Sex differences in mutation rate in higher primates estimated from AMG intron sequences. J. Mol. Evol. 44, 463–465 (1997).

  207. 207

    Shimmin, L.C., Chang, B.H. & Li, W.H. Male-driven evolution of DNA sequences. Nature 362, 745–747 (1993).

  208. 208

    Chang, B.H.-J., Hewett-Emmett, D. & Li, W.-H. Male-to-female ratios of mutation rate in higher primates estimated from intron sequences. Zool. Studies 35, 36–48 (1996).

  209. 209

    Pecon Slattery, J. & O'Brien, S.J. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics 148, 1245–1255 (1998).

  210. 210

    Chang, B.H.-J., Shimmin, L.C., Shyue, S.K., Hewett-Emmett, D. & Li, W.H. Weak male-driven molecular evolution in rodents. Proc. Natl. Acad. Sci. USA 91, 827–831 (1994).

  211. 211

    Chang, B.H.-J. & Li, W.H. Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube1 genes and pseudogenes. J. Mol. Evol. 40, 70–77 (1995).

  212. 212

    Kahn, N.W. & Quinn, T.W. Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system. J. Mol. Evol. 49, 750–759 (1999).

  213. 213

    Carmichael, A.N., Fridolfsson, A.K., Halverson, J. & Ellegren, H. Male-biased mutation rates revealed from Z and W chromosome-linked ATP synthase α-subunit (ATP5A1) sequences in birds. J. Mol. Evol. 50, 443–447 (2000).

  214. 214

    Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).

Download references

Acknowledgements

We thank S. Yi and K. Makova for help, and L. Hurst for comments. This work was supported by grants from the National Institutes of Health (to W.-H.L.) and from Science Foundation Ireland (to K.H.W.)

Author information

Correspondence to Kenneth H. Wolfe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolfe, K., Li, W. Molecular evolution meets the genomics revolution. Nat Genet 33, 255–265 (2003) doi:10.1038/ng1088

Download citation

Further reading