Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extensive allelic variation and ultrashort telomeres in senescent human cells

Abstract

By imposing a limit on the proliferative lifespan of most somatic cells, telomere erosion represents an innate mechanism for tumor suppression1 and may contribute to age-related disease2. A detailed understanding of the pathways that link shortened telomeres to replicative senescence has been severely hindered by the inability of current methods to analyze telomere dynamics in detail. Here we describe single telomere length analysis (STELA), a PCR-based approach that accurately measures the full spectrum of telomere lengths from individual chromosomes. STELA analysis of human XpYp telomeres in fibroblasts identifies several features of telomere biology. We observe bimodal distributions of telomeres in normal fibroblasts; these distributions result from inter-allelic differences of up to 6.5 kb, indicating that unexpectedly large-scale differences in zygotic telomere length are maintained throughout development. Most telomeres shorten in a gradual fashion consistent with simple losses through end replication, and the rates of erosion are independent of allele size. Superimposed on this are occasional, more substantial changes in length, which may be the consequence of additional mutational mechanisms. Notably, some alleles show almost complete loss of TTAGGG repeats at senescence.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The principle of STELA at the XpYp telomere.
Figure 2: STELA of primary fibroblast strains.
Figure 3: Senescent normal primary fibroblasts derived from the illustrated pedigree.
Figure 4: Variation at the XpYp telomere.
Figure 5: Telomere loss and the generation of heterogeneity at four separate telomeres during culture of MRC5 subclones to senescence.

References

  1. Hahn, W.C & Weinberg, R.A. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2, 331–341 (2002).

    CAS  Article  Google Scholar 

  2. Kipling, D. Telomeres, replicative senescence and human ageing. Maturitas 38, 25–37 (2001).

    CAS  Article  Google Scholar 

  3. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  Article  Google Scholar 

  4. Baird, D.M., Jeffreys, A.J. & Royle, N.J. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere EMBO J. 14, 5433–5443 (1995).

    CAS  Article  Google Scholar 

  5. von Zglinicki, T., Saretzki, G., Docke, W. & Lotze, C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186–193 (1995).

    CAS  Article  Google Scholar 

  6. Levy, M.Z., Allsopp, R.C., Futcher, A.B., Greider, C.W. & Harley, C.B. Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960 (1992).

    CAS  Article  Google Scholar 

  7. Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    CAS  Article  Google Scholar 

  8. Allshire, R.C. et al. Telomeric repeat from T. thermophila cross-hybridizes with human telomeres. Nature 332, 656–659 (1988).

    CAS  Article  Google Scholar 

  9. Lansdorp, P.M. et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691 (1996).

    CAS  Article  Google Scholar 

  10. Baird D.M., Coleman, J., Rosser, Z.H. & Royle, N.J. High levels of sequence polymorphism and linkage disequilibrium at the telomere of 12q: implications for telomere biology and human evolution. Am. J. Hum. Genet. 66, 235–250 (2000).

    CAS  Article  Google Scholar 

  11. Coleman, J., Baird, D.M. & Royle, N.J. The plasticity of human telomeres demonstrated by a hypervariable telomere repeat array that is located on some copies of 16p and 16q. Hum. Mol. Genet. 8, 1637–1646 (1999).

    CAS  Article  Google Scholar 

  12. Counter, C.M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    CAS  Article  Google Scholar 

  13. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  Article  Google Scholar 

  14. Varley, H., Pickett, H.A., Foxon, J.L., Reddel, R.R. & Royle, N.J. Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nat. Genet. 30, 301–305 (2002).

    Article  Google Scholar 

  15. Rubelj, I. & Vondracek, Z. Stochastic mechanism of cellular aging-abrupt telomere shortening as a model for stochastic nature of cellular aging. J. Theor. Biol. 197, 425–438 (1999).

    CAS  Article  Google Scholar 

  16. Tan, Z. Telomere shortening and the population size-dependency of life span of human cell culture: further implication for two proliferation-restricting telomeres. Exp. Gerontol. 34, 831–842 (1999).

    CAS  Article  Google Scholar 

  17. Smith, J.R. & Whitney, R.G. Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207, 82–84 (1980).

    CAS  Article  Google Scholar 

  18. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    CAS  Article  Google Scholar 

  19. Greider, C.W. Telomere length regulation. Annu. Rev. Biochem. 65, 337–365 (1996).

    CAS  Article  Google Scholar 

  20. Hemann, M.T., Strong, M.A., Hao, L.Y. & Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    CAS  Article  Google Scholar 

  21. Kipling, D. & Cooke, H.J. Hypervariable ultra-long telomeres in mice. Nature 347, 400–402 (1990).

    CAS  Article  Google Scholar 

  22. Zijlmans, J.M. et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428 (1997).

    CAS  Article  Google Scholar 

  23. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).

    CAS  Article  Google Scholar 

  24. Perls, T.T. et al. Life-long sustained mortality advantage of siblings of centenarians. Proc. Natl. Acad. Sci. USA 99, 8442–8447 (2002).

    CAS  Article  Google Scholar 

  25. Wyllie, F.S. et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat. Genet. 24, 16–17 (2000).

    CAS  Article  Google Scholar 

  26. McSharry, B.P., Jones, C.J., Skinner, J.W., Kipling, D. & Wilkinson, G.W. Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J. Gen. Virol. 82, 855–63 (2001).

    CAS  Article  Google Scholar 

  27. Jones, C.J. et al. Dissociation of telomere dynamics from telomerase activity in human thyroid cancer cells. Exp. Cell Res. 240, 333–339 (1998).

    CAS  Article  Google Scholar 

  28. Bond, J.A. et al. Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Mol. Cell. Biol. 19, 3103–3114 (1999).

    CAS  Article  Google Scholar 

  29. Sambrook, J., Fritsch, E.F. and Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

Download references

Acknowledgements

We thank J. Skinner and J. Bond for cell samples and members of our laboratory for input. This work was supported by the Association for International Cancer Research. D.M.B. is a Research into Ageing Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan M. Baird.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baird, D., Rowson, J., Wynford-Thomas, D. et al. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33, 203–207 (2003). https://doi.org/10.1038/ng1084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1084

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing