Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling

A Corrigendum to this article was published on 01 January 2003

Abstract

The Wnt signal-transduction pathway induces the nuclear translocation of membrane-bound β-catenin (Catnb) and has a key role in cell-fate determination. Tight somatic regulation of this signal is essential, as uncontrolled nuclear accumulation of β-catenin can cause developmental defects and tumorigenesis in the adult organism. The adenomatous polyposis coli gene (APC) is a major controller of the Wnt pathway and is essential to prevent tumorigenesis in a variety of tissues and organs. Here, we have investigated the effect of different mutations in Apc on the differentiation potential of mouse embryonic stem (ES) cells. We provide genetic and molecular evidence that the ability and sensitivity of ES cells to differentiate into the three germ layers is inhibited by increased doses of β-catenin by specific Apc mutations. These range from a severe differentiation blockade in Apc alleles completely deficient in β-catenin regulation to more specific neuroectodermal, dorsal mesodermal and endodermal defects in more hypomorphic alleles. Accordingly, a targeted oncogenic mutation in Catnb also affects the differentiation potential of ES cells. Expression profiling of wildtype and Apc-mutated teratomas supports the differentiation defects at the molecular level and pinpoints a large number of downstream structural and regulating genes. Chimeric experiments showed that this effect is cell-autonomous. Our results imply that constitutive activation of the Apc/β-catenin signaling pathway results in differentiation defects in tissue homeostasis, and possibly underlies tumorigenesis in the colon and other self-renewing tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression analysis of truncated Apc proteins in mutant ES-cell lines.
Figure 2: In vivo differentiation analysis of teratomas derived from wildtype and mutant ES cells.
Figure 3: Analysis of chimeric teratomas showed the cell-autonomous nature of the differentiation defect of ES cells with mutations in Apc.
Figure 4: In vitro differentiation analysis of ApcMin and Apc1638N ES cells.
Figure 5: Biochemical and immunohistochemical analysis of teratomas with mutations in Catnb.
Figure 6: Expression profiling analysis of teratomas with mutations in Apc.

Similar content being viewed by others

References

  1. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Seidensticker, M.J. & Behrens, J. Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta 1495, 168–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  4. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer 1, 55–67 (2001).

    Article  CAS  Google Scholar 

  6. Fodde, R. & Smits, R. Disease model: familial adenomatous polyposis. Trends Mol. Med. 7, 369–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Moser, A.R. et al. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Dev. Dyn. 203, 422–433 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fodde, R. et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl Acad. Sci. USA 91, 8969–8973 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smits, R. et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology 114, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Fodde, R. & Khan, P.M. Genotype–phenotype correlations at the adenomatous polyposis coli (APC) gene. Crit. Rev. Oncog. 6, 291–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Boman, B.M., Fields, J.Z., Bonham-Carter, O. & Runquist, O.A. Computer modeling implicates stem cell overproduction in colon cancer initiation. Cancer Res. 61, 8408–8411 (2001).

    CAS  PubMed  Google Scholar 

  15. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Stevens, L.C. The biology of teratomas. Adv. Morphog. 6, 1–31 (1967).

    Article  CAS  PubMed  Google Scholar 

  17. Hay, E.D. & Zuk, A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am. J. Kidney Dis. 26, 678–690 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Rudnicki, M.A. & McBurney, M.W. Cell culture methods and induction of differentiation of embryonal carcinoma cell lines. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.) 19–50 (IRL, Oxford, UK, 1987).

    Google Scholar 

  21. Kim, K., Pang, K.M., Evans, M. & Hay, E.D. Overexpression of β-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol. Biol. Cell 11, 3509–3523 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urist, M.R. Bone: formation by autoinduction. Science 150, 893–899 (1965).

    Article  CAS  PubMed  Google Scholar 

  24. Wozney, J.M. et al. Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U. & Nordheim, A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, G., Lee, H., Price, S.M., Shen, M.M. & Abate-Shen, C. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128, 2373–2384 (2001).

    CAS  PubMed  Google Scholar 

  27. Chen, J. et al. Microarray analysis of Tbx2-directed gene expression: a possible role in osteogenesis. Mol. Cell. Endocrinol. 177, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Yamada, M., Revelli, J.P., Eichele, G., Barron, M. & Schwartz, R.J. Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol. 228, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Monaghan, A.P. et al. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev. 87, 45–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Morin, P.J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med. 5, 1071–1075 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Smits, R. et al. Somatic Apc mutations are selected upon their capacity to inactivate the β-catenin downregulating activity. Genes Chromosomes Cancer 29, 229–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Shih, I.M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl Acad. Sci. USA 98, 2640–2645 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moser, A.R., Dove, W.F., Roth, K.A. & Gordon, J.I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol. 116, 1517–1526 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Ryo, A., Nakamura, M., Wulf, G., Liou, Y.C. & Lu, K.P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Boer and collaborators from the Leiden Genome Technology Center for their assistance with the Affymetrix equipment and G.J.B. van Ommen for his continued support. This study was made possible by a grant to R.F. from the Dutch Research Council. M.R. was supported by grants from the Academy of Finland and the Finnish Cultural Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Fodde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielman, M., Rindapää, M., Gaspar, C. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nat Genet 32, 594–605 (2002). https://doi.org/10.1038/ng1045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing