Review Article | Published:

Functional exploration of the C. elegans genome using DNA microarrays

Nature Genetics volume 32, pages 541546 (2002) | Download Citation

Subjects

Abstract

Global changes in gene expression underlie developmental processes such as organogenesis, embryogenesis and aging in Caenorhabditis elegans. Recently developed methods allow gene expression profiles to be determined selectively for individual tissues and cell types. Results from both whole-animal and tissue-specific expression profiling have provided an unprecedented view into genome organization and gene function. Integration of these results with other types of functional genomics data gathered from RNA-mediated interference and yeast two-hybrid analyses will allow rapid identification and exploration of the complex functional gene networks that govern C. elegans development.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  2. 2.

    et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. 28, 73–76 (2000).

  3. 3.

    & Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2001).

  4. 4.

    et al. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605–616 (2000).

  5. 5.

    et al. A targeted RNAi screen for genes involved in chromosome morphogenesis and nuclear organization in the C. elegans germ line. Genetics 162, 113–128 (2002).

  6. 6.

    , , & Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

  7. 7.

    et al. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 12, 1947–1952 (1998).

  8. 8.

    , , & Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418, 975–979 (2002).

  9. 9.

    , & The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407 (1994).

  10. 10.

    et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514 (2002).

  11. 11.

    et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

  12. 12.

    & mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16 (1988).

  13. 13.

    et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087–2092 (2001).

  14. 14.

    et al. X-chromosome silencing in the germline of C. elegans. Development 129, 479–492 (2002).

  15. 15.

    & Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456 (1998).

  16. 16.

    , & MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development 125, 2457–2467 (1998).

  17. 17.

    , & The Polycomb group in Caenorhabditis elegans and maternal control of germline development. Development 125, 2469–2478 (1998).

  18. 18.

    , , & Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296, 2235–2238 (2002).

  19. 19.

    Gene clusters and polycistronic transcription in eukaryotes. BioEssays 20, 480–487 (1998).

  20. 20.

    et al. A global analysis of Caenorhabditis elegans operons. Nature 417, 851–854 (2002).

  21. 21.

    & Teamed up for transcription. Nature 417, 797–798 (2002).

  22. 22.

    , , , & Genomic analysis of gene expression in C. elegans. Science 290, 809–812 (2000).

  23. 23.

    , , , , & Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 218–223 (2001).

  24. 24.

    et al. Transcriptional profile of aging in C. elegans. Curr. Biol. 12, 1566–1573 (2002).

  25. 25.

    , & Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genet. 11, 309–313 (1995).

  26. 26.

    , , & Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat. Genet. 17, 119–121 (1997).

  27. 27.

    Gene silencing: shrinking the black box of RNAi. Curr. Biol. 9, R440–R442 (1999).

  28. 28.

    et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

  29. 29.

    et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

  30. 30.

    , , , & RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Curr. Biol. 10, 1619–1622 (2000).

  31. 31.

    , , & Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).

  32. 32.

    et al. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nature Genet. 27, 332–336 (2001).

  33. 33.

    et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

  34. 34.

    et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127–131 (2002).

  35. 35.

    et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Current Biol. (in press).

  36. 36.

    , , & Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids. Res. 29, E29 (2001).

  37. 37.

    , , & Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2002).

  38. 38.

    et al. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol. Cell 9, 1133–1143 (2002).

  39. 39.

    , , , , & Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 14, 1053–1066 (2001).

  40. 40.

    & Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26, 48–56 (2002).

  41. 41.

    , & Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genet. 27, 304–308 (2001).

Download references

Acknowledgements

I thank K. White, S. West and W. Chi for critically reading the manuscript, and W.G. Kelly for the photograph in Fig. 2b.

Author information

Affiliations

  1. Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA valerie.reinke@yale.edu

    • Valerie Reinke

Authors

  1. Search for Valerie Reinke in:

Competing interests

The author declares no competing financial interests.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/ng1039

Further reading Further reading