Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-analysis follow-up and validation of microarray experiments

Abstract

Measurement of gene-expression profiles using microarray technology is becoming increasingly popular among the biomedical research community. Although there has been great progress in this field, investigators are still confronted with a difficult question after completing their experiments: how to validate the large data sets that are generated? This review summarizes current approaches to verifying global expression results, discusses the caveats that must be considered, and describes some methods that are being developed to address outstanding problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key Issues for validation of microarray data.

Katie Ris

Figure 2: Schematic figure showing the principle and various applications of layered expression scanning (LES).

Similar content being viewed by others

References

  1. Churchill, G.A. Fundamentals of experimental design for cDNA microarrays. Nature Genet. 32, 490–495 (2002).

    Article  CAS  Google Scholar 

  2. Quackenbush, J. Microarray data normalization and transformation. Nature Genet. 32, 496–501 (2002).

    Article  CAS  Google Scholar 

  3. Stoeckert, C.J., Causton, H.C. & Ball, C.A. Microarray databases: standards and ontologies. Nature Genet. 32, 469–473 (2002).

    Article  CAS  Google Scholar 

  4. Holloway, A.J., Murphy, M. & Bowtell, D.D.L. Options available—from start to finish—for obtaining data from DNA microarrays. Nature Genet. 32, 481–489 (2002).

    Article  CAS  Google Scholar 

  5. Slonim, D.K. From patterns to pathways: gene-expression data analysis comes of age. Nature Genet. 32, 502–508 (2002).

    Article  CAS  Google Scholar 

  6. Hess, K.R., Zhang, W., Baggerly, K.A., Stivers, D.N. & Coombes, K.R. Microarrays: handling the deluge of data and extracting reliable information. Trends Biotechnol. 19, 463–468 (2001).

    Article  CAS  Google Scholar 

  7. Pan, W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–554 (2002).

    Article  CAS  Google Scholar 

  8. Nadon, R. & Shoemaker, J. Statistical issues with microarrays: processing and analysis. Trends Genet. 18, 265–271 (2002).

    Article  CAS  Google Scholar 

  9. Mills, J.C., Roth, K.A., Cagan, R.L. & Gordon, J.I. DNA microarrays and beyond: completing the journey from tissue to cell. Nature Cell Biol. 3, 175–178 (2001).

    Article  Google Scholar 

  10. Mutch, D.M., Berger, A., Mansourian, R., Rytz, A. & Roberts, M.A. Microarray data analysis: a practical approach for selecting differentially expressed genes. Genome Biol. 2, preprint0009 (2001).

  11. Ellis, M. et al. Development and validation of a method for using breast core needle biopsies for gene expression microarray analyses. Clin. Cancer Res. 8, 1155–1166 (2002).

    CAS  Google Scholar 

  12. Luo, J. et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688 (2001).

    CAS  Google Scholar 

  13. Welsh, J.B. et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61, 5974–5978 (2001).

    CAS  Google Scholar 

  14. LaTulippe, E. et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62, 4499–4506 (2002).

    CAS  Google Scholar 

  15. Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  Google Scholar 

  16. Emmert-Buck, M.R. et al. Molecular profiling of clinical tissue specimens: feasibility and applications. Am. J. Pathol. 156, 1109–1115 (2000).

    Article  CAS  Google Scholar 

  17. Magee, J.A. et al. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 61, 5692–5696 (2001).

    CAS  Google Scholar 

  18. Stamey, T.A. et al. Molecular genetic profiling of Gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J. Urol. 166, 2171–2177 (2001).

    Article  CAS  Google Scholar 

  19. Ahram, M. et al. Proteomic analysis of human prostate cancer. Mol. Carcin. 33, 9–15 (2001).

    Article  Google Scholar 

  20. Singh, D. et al. Gene expression correlates of clinical prostate cancer. Cancer Cell 1, 203–209 (2002).

    Article  CAS  Google Scholar 

  21. Svaren, J. et al. EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J. Biol. Chem. 275, 38524–38531 (2000).

    Article  CAS  Google Scholar 

  22. Chaib, H., Cockrell, E.K., Rubin, M.A. & Macoska, J.A. Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia 3, 43–52 (2001).

    Article  CAS  Google Scholar 

  23. Porkka, K., Saramaki, O., Tanner, M. & Visakorpi, T. Amplification and overexpression of Elongin C gene discovered in prostate cancer by cDNA microarrays. Lab. Invest. 82, 629–637 (2002).

    Article  CAS  Google Scholar 

  24. Mousses, S. et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 62, 1256–1260 (2002).

    CAS  Google Scholar 

  25. Rhodes, D., Barrette, T., Rubin, M.A., Ghosh, D. & Chinnaiyan, A.M. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 62, 4427–4433 (2002).

    CAS  Google Scholar 

  26. Canada, A.T. et al. Glutathione and glutathione S-transferase in benign and malignant prostate cell lines and prostate tissues. Biochem. Pharmacol. 51, 87–90 (1996).

    Article  CAS  Google Scholar 

  27. Al Moustafa, A.E. et al. Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 21, 2634–2640 (2002).

    Article  Google Scholar 

  28. Bangur, C.S. et al. Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene 21, 3814–3825 (2002).

    Article  CAS  Google Scholar 

  29. Alevizos, I. et al. Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 20, 6196–6204 (2001).

    Article  CAS  Google Scholar 

  30. Luo, J.H. et al. Gene expression analysis of prostate cancer. Mol. Carcin. 33, 25–35 (2002).

    Article  CAS  Google Scholar 

  31. Jiang, Y. et al. Discovery of differentially expressed genes in human breast cancer using subtracted cDNA libraries and cDNA microarrays. Oncogene 21, 2270–2282 (2002).

    Article  CAS  Google Scholar 

  32. Scheidl, S.J. et al. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures. Am. J. Pathol. 160, 801–813 (2002).

    Article  CAS  Google Scholar 

  33. Amundson, S.A. et al. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic responses. Oncogene 18, 3666–3672 (1999).

    Article  CAS  Google Scholar 

  34. Clark, J. et al. Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clones. Genes, Chromosomes Cancer 34, 104–114 (2002).

    Article  CAS  Google Scholar 

  35. Rajeevan, M.S., Vernon, S.D., Taysavang, N. & Unger, E.R. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J. Mol. Diagnosis 3, 26–31 (2001).

    Article  CAS  Google Scholar 

  36. Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235 (2000).

    Article  CAS  Google Scholar 

  37. Taniguchi, M., Miura, K., Iwao, H. & Yamanaka, S. Quantitative assessment of DNA microarrays—comparison with Northern blot analyses. Genomics 71, 34–39 (2001).

    Article  CAS  Google Scholar 

  38. Sgroi, D.C. et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59, 5656–5661 (1999).

    CAS  Google Scholar 

  39. Vu, H.L., Troubetzkoy, S., Nguyen, H.H., Russell, M.W. & Mestecky, J. A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. Nucleic Acids Res. 28, E18 (2000).

    Article  CAS  Google Scholar 

  40. Nacht, M. et al. Molecular characteristics of non-small cell lung cancer. Proc. Natl Acad. Sci. USA 98, 15203–15208 (2001).

    Article  CAS  Google Scholar 

  41. Walker, N. A technique whose time has come. Science 296, 557–558 (2002).

    Article  CAS  Google Scholar 

  42. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998).

    Article  CAS  Google Scholar 

  43. Kallioniemi, O.P., Wagner, U., Kononen, J. & Sauter, G. Tissue microarray technology for high-throughput molecular profiling of cancer. Hum. Mol. Genet. 10, 657–662 (2001).

    Article  CAS  Google Scholar 

  44. Hoos, A. & Cordon-Cardo, C. Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab. Invest. 81, 1331–1338 (2001).

    Article  CAS  Google Scholar 

  45. Fejzo, M. & Slamon, D.J. Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am. J. Pathol. 159, 1645–1650 (2001).

    Article  CAS  Google Scholar 

  46. Bubendorf, L. et al. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J. Natl Cancer Inst. 91, 1758–1764 (1999).

    Article  CAS  Google Scholar 

  47. Battifora, H. The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab. Invest. 55, 244–248 (1986).

    CAS  Google Scholar 

  48. Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  49. Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481–1483 (1997).

    Article  CAS  Google Scholar 

  50. Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  Google Scholar 

  51. Petricoin, E.F. et al. Medical applications of microarrays: a regulatory science perspective. Nature Genet. 32, 474–479 (2002).

    Article  CAS  Google Scholar 

  52. Brown Jones, M. et al. The granulin-epithelin precursor/PC-cell derived growth factor is a growth factor for epithelial ovarian cancer. Clin. Cancer Res. In press.

  53. Cole, K.A., Krizman, D.B. & Emmert-Buck, M.R. The genetics of cancer—a 3D model. Nature Genet. 21, 38–41 (1999).

    Article  CAS  Google Scholar 

  54. Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Med. 5, 117–122 (1999).

    Article  CAS  Google Scholar 

  55. Luzzi, V., Holtschlag, V. & Watson, M.A. Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am. J. Pathol. 158, 2005–2010 (2001).

    Article  CAS  Google Scholar 

  56. Leethanakul, C. et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19, 3220–3224 (2000).

    Article  CAS  Google Scholar 

  57. Van Gelder, R. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 87, 1663–1667 (1990).

    Article  CAS  Google Scholar 

  58. Englert, C.R., Baibakov, G.V. & Emmert-Buck, M.R. Layered expression scanning: rapid molecular profiling of tumor samples. Cancer Res. 60, 1526–1530 (2000).

    CAS  Google Scholar 

  59. Emmert-Buck, M.R. et al. An approach to proteomic analysis of human tumors. Mol. Carcin. 27, 158–165 (2000).

    Article  CAS  Google Scholar 

  60. Ornstein, D.K. et al. Proteomic analysis of laser capture microdissected prostate cancer and in vitro cell lines. Electrophoresis 21, 2235–2242 (2000).

    Article  CAS  Google Scholar 

  61. Carlisle, A. et al. Development of a prostate cDNA microarray and statistical gene expression analysis package. Mol. Carcin. 27, 1–11 (2000).

    Article  Google Scholar 

  62. Strausberg, R.L., Buetow, K.H., Emmert-Buck, M.R. & Klausner, R.D. The cancer genome anatomy project: building an annotated gene index. Trends Genet. 16, 103–106 (2000).

    Article  CAS  Google Scholar 

  63. Paweletz, C.P. et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res. 60, 6293–6297 (2000).

    CAS  Google Scholar 

  64. Kang, J. et al. Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin. Cancer Res. 8, 117–123 (2002).

    CAS  Google Scholar 

  65. Fend, F. et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66 (1999).

    Article  CAS  Google Scholar 

  66. Hodge, D.L. et al. IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXCR3 expression. J. Immunol. 168, 6090–6098 (2002).

    Article  CAS  Google Scholar 

  67. Saban, M.R. et al. Time course of LPS-induced gene expression in a mouse model of genitourinary inflammation. Physiol. Genomics 5, 147–160 (2001).

    Article  CAS  Google Scholar 

  68. Bonaventure, P. et al. Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res. 943, 38–47 (2002).

    Article  CAS  Google Scholar 

  69. Qi, Z.Y. et al. Isolation of novel differentially expressed genes related to human glioma using cDNA microarray and characterizations of two novel full-length genes. J. Neurooncol. 56, 197–208 (2002).

    Article  Google Scholar 

  70. Burton, G.R., Guan, Y., Nagarajan, R. & McGehee, R.E. Microarray analysis of gene expression during early adipocyte differentiation. Gene 293, 21–31 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Emmert-Buck.

Ethics declarations

Competing interests

Michael Emmert-Buck is an inventor on multiple allowed patents and patent applications covering LCM, LES, and expression microdissection, and is entitled to receive royalty payments through the NIH technology transfer program. LCM is licensed by Arcturus Engineering (http://www.arctur.com). LES is licensed by 20/20 GeneSystems (http://www.2020gene.com).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuaqui, R., Bonner, R., Best, C. et al. Post-analysis follow-up and validation of microarray experiments. Nat Genet 32 (Suppl 4), 509–514 (2002). https://doi.org/10.1038/ng1034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing