Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-resolution haplotype structure in the human genome

Abstract

Linkage disequilibrium (LD) analysis is traditionally based on individual genetic markers and often yields an erratic, non-monotonic picture, because the power to detect allelic associations depends on specific properties of each marker, such as frequency and population history. Ideally, LD analysis should be based directly on the underlying haplotype structure of the human genome, but this structure has remained poorly understood. Here we report a high-resolution analysis of the haplotype structure across 500 kilobases on chromosome 5q31 using 103 single-nucleotide polymorphisms (SNPs) in a European-derived population. The results show a picture of discrete haplotype blocks (of tens to hundreds of kilobases), each with limited diversity punctuated by apparent sites of recombination. In addition, we develop an analytical model for LD mapping based on such haplotype blocks. If our observed structure is general (and published data suggest that it may be), it offers a coherent framework for creating a haplotype map of the human genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of single-marker LD with haplotype-based LD.
Figure 2: Block-like haplotype diversity at 5q31.

Similar content being viewed by others

References

  1. Rioux, J.D. et al. Hierarchical linkage disequilibrium mapping of a susceptibility gene for Crohn's disease to the cytokine cluster on chromosome 5. Nature Genet. 29, 223–228 (2001).

    Article  CAS  Google Scholar 

  2. Templeton, A.R. et al. Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am. J. Hum. Genet. 66, 69–83 (2000).

    Article  CAS  Google Scholar 

  3. Jeffreys, A.J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).

    Article  CAS  Google Scholar 

  4. Smith, R.A., Ho, P.J., Clegg, J.B., Kidd, J.R. & Thein, S.L. Recombination breakpoints in the human β-globin gene cluster. Blood 92, 4415–4421 (1998).

    CAS  Google Scholar 

  5. Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet. 29, 217–222 (2001).

    Article  CAS  Google Scholar 

  6. Sved, J.A. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Pop. Biol. 2, 125–141 (1971).

    Article  CAS  Google Scholar 

  7. The International SNP Map Working Group. A map of the human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

  8. Krawczak, M., Ball, E.V. & Cooper, D.N. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am. J. Hum. Genet. 63, 474–488 (1998).

    Article  CAS  Google Scholar 

  9. Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed Central  Google Scholar 

  10. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  11. Drysdale, C.M. et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA 97,10483–10488 (2000).

    Article  CAS  Google Scholar 

  12. Park, H.Y. et al. Identification of new single–nucleotide polymorphisms in the thrombin receptor gene and their effects on coronary artery diseases in Koreans. Clin. Exp. Pharmacol. Physiol. 27, 690–693 (2000).

    Article  CAS  Google Scholar 

  13. Jordanides, N., Eskdale, J., Stuart, R. & Gallagher, G. Allele associations reveal four prominent haplotypes at the human interleukin-6 (IL-6) locus. Genes Immun. 1, 451–455 (2000).

    Article  CAS  Google Scholar 

  14. D'Alfonso, S., Rampi, M., Rolando, V., Giordano, M. & Momigliano–Richiardi, P. New polymorphisms in the IL–10 promoter region. Genes Immun. 1, 231–233 (2000).

    Article  CAS  Google Scholar 

  15. Bonnen, P.E. et al. Haplotypes at ATM identify coding–sequence variation and indicate a region of extensive linkage disequilibrium. Am. J. Hum. Genet. 67, 1437–1451 (2000).

    Article  CAS  Google Scholar 

  16. Moffatt, M.F., Traherne, J.A., Abecasis, G.R. & Cookson, W.O. Single nucleotide polymorphism and linkage disequilibrium within the TCR α/δ locus. Hum. Mol. Genet. 9, 1011–1019 (2000).

    Article  CAS  Google Scholar 

  17. Reich, D.R. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    Article  CAS  Google Scholar 

  18. Lewontin, R.C. The interaction of selection and linkage. General considerations; heterotic models. Genetics 49, 49–67 (1964).

    CAS  PubMed Central  Google Scholar 

  19. Hedrick, P.W. Gametic disequilibrium measures: proceed with caution. Genetics 117, 331–341 (1987).

    CAS  PubMed Central  Google Scholar 

  20. Johnson, G.C.L. et al. Haplotype tagging for the identification of common disease genes. Nature Genet. 29, 233–237 (2001).

    Article  CAS  Google Scholar 

  21. Kruglyak, L. & Lander, E.S. High-resolution genetic mapping of complex traits. Am. J. Hum. Genet. 56, 1212–1223 (1995).

    CAS  PubMed Central  Google Scholar 

  22. Daly, M.J. et al. Genehunter 2.0—a complete linkage analysis system. Am. J. Hum. Genet. 63, A286 (1998).

    Google Scholar 

  23. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39, 1–38 (1977).

    Google Scholar 

  24. Excoffier L. & Slatkin, M. Maximum–likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995).

    CAS  Google Scholar 

  25. Clark A.G. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 7, 111–122 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Reich, D. Altshuler, J. Hirschhorn, K. Lindblad-Toh and M.P. Reeve for many valuable discussions and comments on the manuscript, A. Kirby for informatics support, the technicians in the inflammatory disease research group at the Whitehead Institute Center for Genome Research for their skilled genotyping work and the anonymous referees for their helpful comments. The authors would also like to thank L. Gaffney for her help in the preparation of this manuscript. This work was supported by research grants from Bristol-Myers Squibb, Millennium Pharmaceutical , and Affymetrix.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark J. Daly or Eric S. Lander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, M., Rioux, J., Schaffner, S. et al. High-resolution haplotype structure in the human genome. Nat Genet 29, 229–232 (2001). https://doi.org/10.1038/ng1001-229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1001-229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing