Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effective targeted gene ‘knockdown’ in zebrafish


The sequencing of the zebrafish genome should be completed by the end of 2002. Direct assignment of function on the basis of this information would be facilitated by the development of a rapid, targeted ‘knockdown’ technology in this model vertebrate. We show here that antisense, morpholino-modified oligonucleotides1 (morpholinos) are effective and specific translational inhibitors in zebrafish. We generated phenocopies of mutations of the genes no tail (ref. 2), chordin (ref. 3), one-eyed-pinhead (ref. 4), nacre (ref. 5) and sparse (ref. 6), removing gene function from maternal through post-segmentation and organogenesis developmental stages. We blocked expression from a ubiquitous green fluorescent protein (GFP) transgene, showing that, unlike tissue-restricted limitations found with RNA-based interference in the nematode7, all zebrafish cells readily respond to this technique. We also developed also morpholino-based zebrafish models of human disease. Morpholinos targeted to the uroporphyrinogen decarboxylase gene8 result in embryos with hepatoerythropoietic porphyria. We also used morpholinos for the determination of new gene functions. We showed that embryos with reduced sonic hedgehog (ref. 9) signalling and reduced tiggy-winkle hedgehog (ref. 10) function exhibit partial cyclopia and other specific midline abnormalities, providing a zebrafish genetic model for the common human disorder holoprosencephaly. Conserved vertebrate processes and diseases are now amenable to a systematic, in vivo, reverse-genetic paradigm using zebrafish embryos.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effective delivery and ubiquitous gene inhibition by injected morpholinos (MO).
Figure 2: Zygotic and maternal gene targeting by antisense morpholinos.
Figure 3: Post-somitogenesis embryonic targeting by antisense morpholinos in zebrafish.
Figure 4: The zebrafish as an effective model for the role of sonic hedgehog signalling in HPE.


  1. Summerton, J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim. Biophys. Acta 1489, 141–158 (1999).

    Article  CAS  Google Scholar 

  2. Schulte-Merker, S., van Eeden, F.J., Halpern, M.E., Kimmel, C.B. & Nusslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  PubMed  Google Scholar 

  3. Schulte-Merker, S., Lee, K.J., McMahon, A.P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    Article  CAS  Google Scholar 

  4. Zhang, J., Talbot, W.S. & Schier, A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    Article  CAS  Google Scholar 

  5. Lister, J.A., Robertson, C.P., Lepage, T., Johnson, S.L. & Raible, D.W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126, 3757–3767 (1999).

    CAS  PubMed  Google Scholar 

  6. Parichy, D.M., Rawls, J.F., Pratt, S.J., Whitfield, T.T. & Johnson, S.L. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126, 3425–3436 (1999).

    CAS  PubMed  Google Scholar 

  7. Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).

    Article  CAS  Google Scholar 

  8. Wang, H., Long, Q., Marty, S.D., Sassa, S. & Lin, S. A zebrafish model for hepatoerythropoietic porphyria. Nature Genet. 20, 239–243 (1998).

    Article  CAS  Google Scholar 

  9. Krauss, S., Concordet, J.P. & Ingham, P.W. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444 (1993).

    Article  CAS  Google Scholar 

  10. Ekker, S.C. et al. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol. 5, 944–955 (1995).

    Article  CAS  Google Scholar 

  11. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  Google Scholar 

  12. Arora, V. et al. c-Myc antisense limits rat liver regeneration and indicates role for c- Myc in regulating cytochrome P-450 3A activity. J. Pharmacol. Exp. Ther. 292, 921–928 (2000).

    CAS  PubMed  Google Scholar 

  13. Qin, G., Taylor, M., Ning, Y.Y., Iversen, P. & Kobzik, L. In vivo evaluation of a morpholino antisense oligomer directed against tumor necrosis factor-α. Antisense Nucleic Acid Drug Dev. 10, 11–16 (2000).

    Article  CAS  Google Scholar 

  14. Heasman, J., Kofron, M. & Wylie, C. β-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222, 124–134 (2000).

    Article  CAS  Google Scholar 

  15. Fisher, S., Amacher, S.L. & Halpern, M.E. Loss of cerebrum function ventralizes the zebrafish embryo. Development 124, 1301–1311 (1997).

    CAS  PubMed  Google Scholar 

  16. Hammerschmidt, M. et al. dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123, 95–102 (1996).

    CAS  PubMed  Google Scholar 

  17. Gritsman, K. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999).

    Article  CAS  Google Scholar 

  18. Halpern, M.E. et al. Genetic interactions in zebrafish midline development. Dev. Biol. 187, 154–170 (1997).

    Article  CAS  Google Scholar 

  19. Schier, A.F., Neuhauss, S.C., Helde, K.A., Talbot, W.S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342 (1997).

    CAS  PubMed  Google Scholar 

  20. Fekany, K. et al. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126, 1427–1438 (1999).

    CAS  PubMed  Google Scholar 

  21. Koos, D.S. & Ho, R.K. The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula. Dev. Biol. 215, 190–207 (1999).

    Article  CAS  Google Scholar 

  22. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  Google Scholar 

  23. Kappas, A., Sassa, S., Galbraith, R.A. & Nordmann, Y. The Metabolic Basis of Inherited Diseases (eds Scriver, C.R., Beaudet, A.L. & Sly, W.S.) 2103–2159 (McGraw-Hill, New York, 1995).

    Google Scholar 

  24. Wallis, D.E. & Muenke, M. Molecular mechanisms of holoprosencephaly. Mol. Genet. Metab. 68, 126–138 (1999).

    Article  CAS  Google Scholar 

  25. Belloni, E. et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genet. 14, 353–356 (1996).

    Article  CAS  Google Scholar 

  26. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  Google Scholar 

  27. Schauerte, H.E. et al. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125, 2983–2993 (1998).

    CAS  PubMed  Google Scholar 

  28. Concordet, J.P. et al. Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 122, 2835–2846 (1996).

    CAS  PubMed  Google Scholar 

  29. Miller-Bertoglio, V., Fisher, S., Sanchez, A., Mullins, M. & Halpern, M.E. Differential regulation of chordin expression domains in zebrafish. Dev. Biol. 192, 537–550 (1998).

    Article  Google Scholar 

  30. Sasai, Y. et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  Google Scholar 

Download references


We thank S. Bingham, A. Chandrasekhar and M. Mieda for communication of results before publication; D. Mohn and P. Hackett for the E-line strain; A. Davidson, K. Finley and K. Markley for homozygous E-line fish; M. Halpern for the oep template DNA; A. Davidson, A. Kattan, K. Finley and C. Saunders for independently corroborating this method; P. Ingham for the ptc probe; S. Schulte-Merker for anti-Ntl antibody; J. Larson for technical support; M. Kofron, J. Heasman, J. Summerton and P. Morcos for sharing ideas on the possible uses of morpholinos as antisense inhibitors; and the zebrafish community for their suggestions and encouragement.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stephen C. Ekker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nasevicius, A., Ekker, S. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26, 216–220 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing