Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A radiation hybrid map of the zebrafish genome

Abstract

Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes1,2,3. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map4,5,6 to match them with mapped candidate genes and expressed sequence tags7,8 (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes9,10. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions11,12,13, as well as for the dog14, rat15 and mouse16,17. For our map of the zebrafish genome, we used an existing RH panel18,19 and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiation hybrid map of zebrafish chromosome LG1 anchored to the published genetic map5,6.
Figure 2: Marker retention of the zebrafish radiation hybrid panel.

Similar content being viewed by others

References

  1. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37– 46 (1996).

    CAS  PubMed  Google Scholar 

  2. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  3. Haffter, P. & Nüsslein-Volhard, C. Large scale genetics in a small vertebrate, the zebrafish. Int. J. Dev. Biol. 40, 221–227 (1996).

    CAS  PubMed  Google Scholar 

  4. Knapik, E.W. et al. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451–460 (1996).

    CAS  PubMed  Google Scholar 

  5. Knapik, E.W. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18, 338– 343 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Shimoda, N. et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219–232 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  7. Postlethwait, J.H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345– 349 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Gates, M.A. et al. A genetic linkage map for zebrafish: comparative analysis and localization of genes and expressed sequences. Genome Res. 9, 334–347 ( 1999).

    CAS  PubMed  Google Scholar 

  9. Goss, S.J. & Harris, H. New method for mapping genes in human chromosomes. Nature 255, 680– 684 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Walter, M.A., Spillett, D.J., Thomas, P., Weissenbach, J. & Goodfellow, P.N. A method for constructing radiation hybrid maps of whole genomes. Nature Genet. 7, 22–28 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  12. Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  13. Stewart, E.A. et al. An STS-based radiation hybrid map of the human genome. Genome Res. 7, 422–433 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  14. Priat, C. et al. A whole-genome radiation hybrid map of the dog genome. Genomics 54, 361–378 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe, T.K. et al. A radiation hybrid map of the rat genome containing 5,255 markers. Nature Genet. 22, 27– 36 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy, L.C. et al. A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res. 7, 1153–1161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Etten, W.J. et al. Radiation hybrid map of the mouse genome. Nature Genet. 22, 384–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kwok, C. et al. Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res. 26 , 3562–3566 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwok, C., Critcher, R. & Schmitt, K. Construction and characterization of zebrafish whole genome radiation hybrids. Methods Cell Biol. 60, 287–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Cox, D.R., Burmeister, M., Price, E.R., Kim, S. & Myers, R.M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Boehnke, M., Lange, K. & Cox, D.R. Statistical methods for multipoint radiation hybrid mapping. Am. J. Hum. Genet. 49, 1174– 1188 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hinegardner, R. & Rosen, D.E. Cellular DNA content and the evolution of teleostean fishes. Am. Natur. 166, 621–644 (1972).

    Article  Google Scholar 

  23. Bennet, M.D. & Smith, J.B. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B 274, 227 –273 (1976).

    Article  Google Scholar 

  24. Hukriede, N. et al. Radiation hybrid mapping of the zebrafish genome. Proc. Natl Acad. Sci. USA (in press).

Download references

Acknowledgements

We thank F. Bonhoeffer for support of our project; N. Shimoda, D. Jackson and M. Fishman for genetic map data and primer sequences; and N. Hukriede for helpful discussions. W.S.T. is supported by NIH grant R01RR12349. P.H. is supported by a grant from the German Human Genome Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Geisler.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, R., Rauch, GJ., Baier, H. et al. A radiation hybrid map of the zebrafish genome. Nat Genet 23, 86–89 (1999). https://doi.org/10.1038/12692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing