Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein


Early-onset torsion dystonia is a movement disorder, characterized by twisting muscle contractures, that begins in childhood. Symptoms are believed to result from altered neuronal communication in the basal ganglia. This study identifies the DYT1 gene on human chromosome 9q34 as being responsible for this dominant disease. Almost all cases of early-onset dystonia have a unique 3-bp deletion that appears to have arisen independently in different ethnic populations. This deletion results in loss of one of a pair of glutamic-acid residues in a conserved region of a novel ATP-binding protein, termed torsinA. This protein has homologues in nematode, rat, mouse and humans, with some resemblance to the family of heat-shock proteins and Clp proteases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Fahn, S. Concept and classification of dystonia. Adv. Neurol. 50, 1–8 (1988).

    CAS  Article  Google Scholar 

  2. 2

    Chutorian, A.M. Childhood dystonia. Acta Neuropediatr. 2, 33–45 (1996).

    Google Scholar 

  3. 3

    Nutt, J.G., Muenter, M.D., Aronson, A., Kurland, L.T. & Melton, L.J. Epidemiology of focal and generalized dystonia in Rochester, Minnesota. Mov. Disord. 3, 188–194 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Bressman, S.B. et al. Dystonia in Ashkenazi Jews: clinical characterization of a founder mutation. Ann. Neurol. 36, 771–777 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Greene, P., Kang, U.J. & Fahn, S. Spread of symptoms in idiopathic torsion dystonia. Mov. Disord. 10, 143–152 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Zeman, W. & Dyken, P. Dystonia musculorum deformans: clinical, genetic and patho-anatomical studies. Psychiatr. Neurol. Neurochir. 10, 77–121 (1967).

    Google Scholar 

  7. 7

    Korczyn, A.D. et al. Torsion dystonia in Israel. Ann. Neurol. 8, 387–391 (1980).

    CAS  Article  Google Scholar 

  8. 8

    Eldridge, R. The torsion dystonia: literature review; genetic and clinical studies. Neurology 20, 1–78 (1970).

    CAS  Article  Google Scholar 

  9. 9

    Ozelius, L.J. et al. Strong allelic association between the torsion dystonia gene (DYT1) and loci on chromosome 9q34 in Ashkenazi Jews. Am. J. Hum. Genet. 50, 619–628 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Risch, N.J. et al. Segregation analysis of idiopathic torsion dystonia in Ashkenazi Jews suggests autosomal dominant inheritance. Am. J. Hum. Genet. 46, 533–538 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Risch, N. et al. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nature Genet. 9, 152–159 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Bressman, S.B. et al. Idiopathic dystonia among Ashkenazi Jews: evidence for autosomal dominant inheritance. Ann. Neurol. 26, 612–620 (1989).

    CAS  Article  Google Scholar 

  13. 13

    Ozelius, L. et al. Human gene for torsion dystonia located on chromosome 9q32-q34. Neuron 2, 1427–1434 (1989).

    CAS  Article  Google Scholar 

  14. 14

    Kramer, P.L. et al. Dystonia gene in Ashkenazi Jewish population is located on chromosome 9q32-q34. Ann. Neurol. 27, 114–120 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Kramer, P.L. et al. The DYT1 gene on 9q34 is responsible for most cases of early limb-onset idiopathic torsion dystonia (ITD) in non-Jews. Am. J. Hum. Gen. 55, 468–475 (1994).

    CAS  Google Scholar 

  16. 16

    Ozelius, L.J. et al. Fine localization of the torsion dystonia gene (DYT1) on human chromosome 9q34: YAC map and linkage disequilibrium. Genome Res. 7, 483–494 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Buckler, A.J. et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. Natl. Acad. Sci. USA 88, 4005–4009 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl. Acad. Sci. USA 85, 8998–9002 (1988).

    CAS  Article  Google Scholar 

  20. 20

    Kozak, M. An analysis of 5′-noncoding sequences upstream from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    CAS  Article  Google Scholar 

  21. 21

    Almasy, L. et al. Idiopathic torsion dystonia linked to chromosome 8 markers in a family of German Mennonite origin. Neurology (in the press).

  22. 22

    Schirmer, E.C., Glover, J.R., Singer, M.A. & Lindquist, S. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21, 289–296 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Perier, F., Radeke, C.M., Raab-Graham, K.F. & Vandenberg, C.A. Expression of a putative ATPase suppresses the growth defect of a yeast potassium transport mutant: identification of a mammalian member of the Clp/HSP104 family. Gene 152, 157–163 (1995).

    CAS  Article  Google Scholar 

  24. 24

    Parsell, D.A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Walker, J.E., Sarasti, M., Runswick, M.S. & Gay, N.S. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–950 (1982).

    CAS  Article  Google Scholar 

  26. 26

    Confalonieri, F. & Duguet, M. A 200–amino acid ATPase module in search of a basic function. Bioessays 17, 639–650 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Missiakas, D., Schwager, F., Betton, J.-M., Georgopoulos, C. & Raina, J. Identification and characterization of HS1V HS1U (CIpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15, 5899–6909 (1996).

    Article  Google Scholar 

  28. 28

    Akiyama, Y., Shirai, Y. & Ito, K. Involvement of FtsH in protein assembly into and through the membrane. J. Biol. Chem. 269, 5225–5229 (1994).

    CAS  PubMed  Google Scholar 

  29. 29

    Boyd, D. & Beckwith, J. The role of charged amino acids in the localization of secreted and membrane proteins. Cell 62, 1031–1033 (1990).

    CAS  Article  Google Scholar 

  30. 30

    Grosson, G.L., Esteban, J., McKenna-Yasek, D., Gusella, J.F. & Brown, R.H. Hypokalemic periodic paralysis mutations: confirmation of mutation and analysis of founder effect. Neurol. Disord. 6, 27–31 (1995).

    Article  Google Scholar 

  31. 31

    Fontaine, B. et al. Mapping of the hypokalaemic periodic paralysis (HypoPP) locus to chromosome 1q31–32 in three European families. Nature Genet. 6, 267–272 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Bellus, G.A. et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet. 56, 368–373 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Watkins, H. et al. Independent origin of identical beta cardiac myosin heavy-chain mutations in hypertrophic cardiomyopathy. Am. J. Hum. Genet. 53, 1180–1185 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Gusella, J.F., Persichetti, F. & MacDonald, M.E. The genetic defect causing Huntington's disease: repeated in other contexts? Mol. Med. 3, 238–246 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Paulson, H.L. & Fishbeck, K.H. Trinucleotide repeats in neurogenetic disorders. Ann. Rev. Neurosci. 19, 79–107 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Nygaard, T.G. et al. Linkage mapping of dopa-responsive dystonia (DRD) to chromosome 14q. Nature Genet. 5, 386–391 (1993).

    CAS  Article  Google Scholar 

  37. 37

    Endo, K. et al. The gene for hereditary progressive dystonia with marked diurnalfluctuation maps to chromosome 14q. in Monographs in Neural Sciences: Age-Related Dopamine-Dependent Disorders (eds Segawa, M. & Nomura, Y.) 120–125 (Karger, New York, 1995).

    Google Scholar 

  38. 38

    Ludecke, B., Dworniczak, B. & Bartholome, K. A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome. Hum. Genet. 95, 123–125 (1995).

    CAS  PubMed  Google Scholar 

  39. 39

    Knappskog, P.M., Glatmark, T., Mallet, J., Ludecke, B. & Bartholome, K. Recessively inherited L-dopa–responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum. Mol. Genet. 4, 1209–1212 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Fink, J.K. et al. Paroxysmal dystonic choreoathetosis: tight linkage to chromosome 2q. Am. J. Hum. Genet. 59, 140–145 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Fouad, G.T., Servidei, S., Durcan, S., Bertini, E. & Ptácek, L.J. A gene for familial paroxysmal dyskinesia (FPD1) maps to chromosome 2q. Am. J. Hum. Genet. 59, 135–139 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Leube, B. et al. Idiopathic torsion dystonia: assignment of a gene to chromosome 18p in a German family with adult onset, autosomal dominant inheritance and purely focal distribution. Hum. Mol. Genetics 5, 1673–1677 (1996).

    CAS  Article  Google Scholar 

  43. 43

    Wilhelmsen, K.D. et al. Genetic mapping of ‘lubag’ (X-linked dystonia-parkinsonism) is a Filipino kindred to the pericentromeric region of the X chromosomes. Ann. Neurol. 29, 124–131 (1991).

    CAS  Article  Google Scholar 

  44. 44

    Graeber, M.B., Kupke, K.G. & Muller, U. Delineation of the dystonia-parkinsonism syndrome locus in Xq13. Proc. Natl. Acad. Sci. USA 89, 8245–8248 (1992).

    CAS  Article  Google Scholar 

  45. 45

    Furukawa, Y., Mizuno, Y. & Narabayashi, H. Early-onset parkinsonism with dystonia: clinical and biochemical differences from hereditary progressive dystonia or dopa-responsive dystonia. Adv. Neurol. 69, 327–337 (1996).

    CAS  PubMed  Google Scholar 

  46. 46

    LeDoux, M.S., Lorden, J.F. & Meinzen-Derr, J. Selective elimination of cerebellar output in the genetically dystonic rat. Brain Res. 697, 91–103 (1995).

    CAS  Article  Google Scholar 

  47. 47

    Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genet. 10, 301–306 (1995).

    CAS  Article  Google Scholar 

  48. 48

    Nobrega, J.N., Richter, A., Burnham, W.M. & Loscher, W. Alterations in the brain GABAA/benzodiazepine receptor-chloride ionophore complex in a genetic model of paroxysmal dystonia: a quantitative autoradiographic analysis. Neuroscience 64, 229–239 (1995).

    CAS  Article  Google Scholar 

  49. 49

    Nobrega, J.N., Richter, A., Tozman, N., Jiwa, D. & Loscher, W. Quantitative autoradiography reveals regionally selective changes in dopamine D1 and D2 receptor binding in the genetically dystonic hamster. Neuroscience 71, 927–937 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Pratt, G.D., Richter, A., Mohler, H. & Loscher, W. Regionally selective and age-dependent alterations in benzodiazepine receptor binding in the genetically dystonic hamster. J. Neurochem. 64, 2153–2158 (1995).

    CAS  Article  Google Scholar 

  51. 51

    Hedreen, J.C., Zweig, R.M., DeLong, M.R., Whitehouse, P.J. & Price, D.L. Primary dystonias: a review of the pathology and suggestions for new directions of study. Adv. Neurol. 50, 123–132 (1988).

    CAS  PubMed  Google Scholar 

  52. 52

    Pooling, E.C. & Adams, R.D. The pathological anatomy of post-hemiplegic athetosis. Brain 98, 29–48 (1975).

    Article  Google Scholar 

  53. 53

    Bhatia, K.P. & Marsden, C.D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859–876 (1994).

    Article  Google Scholar 

  54. 54

    Kulisevsky, J., Avilar, A., Rolg, C. & Escartin, A. Unilateral blepharospasm stemming from a thalamomesencephalic lesion. Mov. Disord. 8, 239–240 (1993).

    CAS  Article  Google Scholar 

  55. 55

    Christian, C.D. & Paulson, G. Severe motility disturbance after small doses of prochlorperazine. N. Engl. J. Med. 259, 828–830 (1958).

    CAS  Article  Google Scholar 

  56. 56

    Burke, R.E. et al. Tardive dystonia: late onset persistent dystonia caused by antipsychotic drugs. Neurology 32, 1335–1346 (1982).

    CAS  Article  Google Scholar 

  57. 57

    Tabaddor, K., Wolfson, L.I. & Sharpless, N.S. Diminished ventricular fluid dopamine metabolites in adult onset dystonia. Neurology 79, 1249–1253 (1978).

    Article  Google Scholar 

  58. 58

    Wolfson, L.I., Sharpless, N.S. & Thai, L.J. Diminished levels of ventricular fluid norpinephrine metabolite and somatostatin in childhood onset dystonia. Adv. Neurol. 50, 177–181 (1988).

    CAS  PubMed  Google Scholar 

  59. 59

    Brashear, A., Farlow, M.R., Butler, I.J., Kasarskis, E.J. & Dobysns, W.B. Variable phenotype of rapid-onset dystonia-parkinsonism. Mov. Disord. 11, 151–156 (1996).

    CAS  Article  Google Scholar 

  60. 60

    Gasser, T. et al. Haplotype analysis at the DYT1 locus in Ashkenazi Jewish patients with occupational hand dystonia. Mov. Disord. 11, 163–166 (1996).

    CAS  Article  Google Scholar 

  61. 61

    Bressman, S.B. et al. A study of idiopathic torsion dystonia in a non-Jewish family: evidence for genetic heterogeneity. Neurology 44, 283–287 (1994).

    CAS  Article  Google Scholar 

  62. 62

    Gusella, J. et al. Precise localization of human beta-globin gene complex on chromosome 11. Proc. Natl. Acad. Sci. USA 76, 5239–5242 (1979).

    CAS  Article  Google Scholar 

  63. 63

    Anderson, M. & Gusella, J. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro (Rockville) 29, 856–858 (1984).

    Google Scholar 

  64. 64

    Sambrook, J., Fritsch, E.F. & Maniatis, T. Extraction, purification and analysis of messanger RNA from eukaryotic cells, in Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  65. 65

    Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5300 (1979).

    CAS  Article  Google Scholar 

  66. 66

    Newman, P.J. et al. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J. Clin. Invest. 22, 739–743 (1988).

    Article  Google Scholar 

  67. 67

    van Dilla, M.A. & Deaven, L.L. Construction of gene libraries for each human chromosome. Cytometry 11, 208–218 (1990).

    CAS  Article  Google Scholar 

  68. 68

    Deaven, L.L. et al. Construction of human chromosome-specific DNA libraries from flow-sorted chromosomes. Cold Spring Harb. Symp. Quant Biol. 51, 159–167 (1986).

    CAS  Article  Google Scholar 

  69. 69

    McCormick, M.K. et al. Construction and characterization of a YAC library with a low frequency of chimeric clones from flow-sorted human chromosome 9. Genomics 18, 553–558 (1993).

    CAS  Article  Google Scholar 

  70. 70

    Murrell, J. et al. A 500-kilobase region containing the tuberous sclerosis locus (TSC1) in a 1.7-megabase YAC and cosmid contig. Genomics 25, 59–65 (1995).

    CAS  Article  Google Scholar 

  71. 71

    Feinberg, A.P. & Vogelstein, B. Addendum to ‘A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity’. Anal. Biochem. 137, 266–267 (1984).

    CAS  Article  Google Scholar 

  72. 72

    Apte, A.N. & Siebert, P.O. Anchor-ligated cDNA libraries: a technique for generating a cDNA library for the immediate cloning of the 5′ ends of mRNAs. Biotechniques 15, 890–893 (1993).

    CAS  PubMed  Google Scholar 

  73. 73

    Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    CAS  Article  Google Scholar 

  74. 74

    Hayashi, K. & Yandell, D.W. How sensitive is PCR-SSCP? Hum. Mutat. 2, 338–346 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Laurie J. Ozelius.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ozelius, L., Hewett, J., Page, C. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17, 40–48 (1997).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing