Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tenascin–X deficiency is associated with Ehlers–Danlos syndrome

Abstract

The tenascins are a family of large extracellular matrix proteins with at least three members: tenascin-X (TNX)1–3, tenascin-C (TNC, or cytotactin)4–6 and tenascin-R (TN-R, or restrict in)7,8. Although the tenascins have been implicated in a number of important cellular processes, no function has been clearly established for any tenascin9. We describe a new contiguous-gene syndrome, involving the CYP21B and TNX genes, that results in 21-hydroxylase deficiency and a connective-tissue disorder consisting of skin and joint hyperextensibility, vascular fragility and poor wound healing. The connective tissue findings are typical of the Ehlers-Danlos syndrome (EDS)10. The abundant expression of TNX in connective tissues2,11–13 is consistent with a role in EDS, and our patient's skin fibroblasts do not synthesize TNX protein in vitro or in vivo. His paternal allele carries a novel deletion arising from recombination between TNX and its partial duplicate gene, XA14, which precludes TNX synthesis. Absence of TNX mRNA and protein in the proband, mapping of the TNX gene and HLA typing of this family suggest recessive inheritance of TNX deficiency and connective-tissue disease. Although the precise role of TNX in the pathogenesis of EDS is uncertain, this patient's findings suggest a unique and essential role for TNX in connective-tissue structure and function.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Morel, Y., Bristow, J., Gitelman, S.E. & Miller, W.L. Transcript encoded on the opposite strand of the human steroid 21-hydroxylase/complement component C4 gene locus. Proc. Natl. Acad. Sd. USA 86, 6582–6586 (1989).

    Article  CAS  Google Scholar 

  2. Bristow, J., Tee, M.K., Grtelman, S.E., Mellon, S.H. & Miller, W.L. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J. Cell Biol. 122, 265–278 (1993).

    Article  CAS  Google Scholar 

  3. Matsumoto, K. et al. Cluster of fibronectin type III repeats found in the human major histocompatibility complex class III region shows the highest homology with the repeats rn an extracellular matrix protein, tenascin. Genomics 12, 485–491 (1992).

    Article  CAS  Google Scholar 

  4. Erickson, H.P. & Iglesias, J.L. A six-armed oligomer isolated from cell surface fibronectin preparations. Nature 311, 267–269 (1984).

    Article  CAS  Google Scholar 

  5. Chiquet-Ehrismann, R., Mackie, E.J., Pearson, C.A. & Sakakura, T. Tenascin: an extracellular matrix protein involved in tissue integrations during fetal development andoncogenesis. Cell, 47, 131–139 (1986).

    Article  CAS  Google Scholar 

  6. Jones, F.S. et al. A cDNA clone for cytotactin contains sequences similar to epidermal growth factor–like repeats and segments of fibronectin and fibrinogen. Proc. Natl. Acad Sci. USA 85, 2186–2190 (1988).

    Article  CAS  Google Scholar 

  7. Nörenberg, U., Wille, H., Wolff, J.M., Frank, R. & Rathjen, F.G. The chicken neural extracellular matrix molecule restrictin: similarity with EGF-, fibronectin type III-, and fibrinogen-like motifs. Neuron 8, 849–863 (1992).

    Article  Google Scholar 

  8. Fuss, B., Wintergerst, E. & Schachner, M. Molecular characterization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin. J. Cell Biol. 120, 1237–1249 (1993).

    Article  CAS  Google Scholar 

  9. Erickson, H.P., nascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr. Opin. Cell Biol. 5, 869–876 (1993).

    Article  CAS  Google Scholar 

  10. Byers, P.H. Ehlers-Danlos syndrome: recent advances and current understanding of the clinical and genetic heterogeneity. J. Invest. Dermatol. 103, 47S–52S (1994).

    Article  CAS  Google Scholar 

  11. Matsumoto, K., Saga, Y., Ikemura, T., Sakakura, T. & Chiquet-Ehrismann, R. The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J. Cell Biol. 125, 483–493 (1994).

    Article  CAS  Google Scholar 

  12. Burch, G.H., Bedolli, M.A., McDonough, S., Rosenthal, S.M. & Bristow, J. Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev. Dyn. 203, 491–504 (1995).

    Article  CAS  Google Scholar 

  13. Geffrotin, C., Garrido, J.J., Tremet, L. & Vaiman, M. Distinct tissue distribution in pigs of tenascin-X and tenascin-C transcripts. Eur. J. Biochem. 231, 83–92 (1995).

    Article  CAS  Google Scholar 

  14. Gitelman, S.E., Bristow, J. & Miller, W.L. Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus. Mol. Cell. Biol. 12, 2124–2134 (1992).

    Article  CAS  Google Scholar 

  15. Matsumoto, K., Ishihara, N., Ando, A., Inoko, H. & Ikemura, T. Extracellular matrix protein tenascin-like gene found in human MHC class III region. Immunogenetics 36, 400–403 (1992).

    Article  CAS  Google Scholar 

  16. Hausser, I. & Anton-Lamprecht, I. Differential ultrastructural aberrations of collagen fibrils in Ehlers-Danlos syndrome types I–IV as a means of diagnostics and classification. Hum. Genet. 93, 394–407 (1994).

    Article  CAS  Google Scholar 

  17. White, P.C., Vitek, A., Dupont, B. & New, M.I. Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 85, 4436–4440 (1988).

    Article  CAS  Google Scholar 

  18. Sinnott, P. et al. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 87, 2107–2111 (1990).

    Article  CAS  Google Scholar 

  19. Morel, Y. et al. Rearrangements and point mutations of P450c21 genes are distinguished by five restriction endonuclease haplotypes identified by a new probing strategy in 57 families with congenital adrenal hyperplasia. J. Clin. Invest. 83, 527–536 (1989).

    Article  CAS  Google Scholar 

  20. Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T. & Aizawa, S. Mice develop normally without tenascin. Genes Dev. 6, 1821–1831 (1992).

    Article  CAS  Google Scholar 

  21. Forsberg, E. et al. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proc Natl. Acad. Sci. USA 93, 6594–6599 (1996).

    Article  CAS  Google Scholar 

  22. Smith, L.T., Schwarze, U., Goldstein, J. & Byers, P.H. Mutations in the COL3A1 gene result in the Ehlers-Danlos syndrome type IV and alterations in the size and distribution of the major collagen fibrils of the dermis. J. Invest Dermatol. 108, 241–247 (1997).

    Article  CAS  Google Scholar 

  23. Eyre, D.R., Shapiro, F.D. & Aldridge, J.F. A heterozygous collagen defect in a variant of the Ehlers-Danlos syndrome type VII: evidence for a deleted amino-telopeptide domain in the pro-alpha 2(I) chain. J. Biol. Chem. 260, 11322–11329 (1985).

    CAS  PubMed  Google Scholar 

  24. Wirtz, M.K., Glanville, R.W., Steinmann, B., Rao, V.H. & Hollister, D.W. Ehlers-Danlos syndrome type VIIB: deletion of 18 amino acids comprising the N-telopeptide region of a pro-alpha 2(I) chain. J. Biol. Chem. 262, 16376–16385 (1987).

    CAS  PubMed  Google Scholar 

  25. Toriello, H.V. et al. A translation interrupts the COL5A1 gene in a patient with Ehlers-Danlos syndrome and hypomelanosis of Ito. Nature Genet. 13, 361–365 (1996).

    Article  CAS  Google Scholar 

  26. De Paepe, A., Nuytinck, L., Hausser, I., Anton-Lamprecht, I. & Naeyaert, J.M. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am. J. Hum. Genet. 60, 547–554 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wenstrup, R.J., Langland, G.T., Willing, M.C., D'Souza, V.N. & Cole, W.G. A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of proal (V) chains results in the gravis form of the Ehlers–Danlos syndrome (type I). Hum. Mol. Genet. 5, 1733–1736 (1996).

    Article  CAS  Google Scholar 

  28. Pinnell, S.R., Krane, S.M., Kenzora, J.E. & Glimcher, M.J. A heritable disorder of connective tissue: hydroxylysine-deficient collagen disease. N. Engl. J. Med. 286, 1013–1020 (1972).

    Article  CAS  Google Scholar 

  29. Smith, L.T. et al. Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the ami no-terminal propeptide of type I procollagen. Am. J. Hum. Genet. 51, 235–244 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bristow, J., Gitelman, S.E., Tee, M.K., Staels, B. & Miller, W.L. Abundant adrenal-specific transcription of the human P450c21A ‘pseudogene’. J. Biol. Chem. 268, 12919–12924 (1993).

    CAS  PubMed  Google Scholar 

  31. Collier, S. et al. Pulsed field gel electrophoresis identifies a high degree of variability in the number of tandem 21-hydroxylase and complement C4 gene repeats in 21-hydroxylase deficiency haplotypes. EMBO J. 8, 1393–1402 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Bristow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burch, G., Gong, Y., Liu, W. et al. Tenascin–X deficiency is associated with Ehlers–Danlos syndrome. Nat Genet 17, 104–108 (1997). https://doi.org/10.1038/ng0997-104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing