Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics

Abstract

MITF (m icrophthalmia–associated transcription factor) encodes a transcription factor with a basic–helix–loop–helix–zipper (bHLH–Zip) motif. MITF mutations occur in patients with Waardenburg syndrome type 2, a disorder associated with melanocyte abnormalities. Here we show that ectopic expression of MITF converts NIH/3T3 fibroblasts into cells with characteristics of melanocytes. MITF transfectants formed foci of morphologically altered cells, which resemble those induced by oncogenes, but did not exhibit malignant phenotypes. Instead, they contained dendritic cells that express melanogenic marker proteins such as tyrosinase and tyrosinase–related protein 1. Most cloned cells of MITF transfectants exhibited dendritic morphology and expressed melanogenic markers, but such properties were not observed in cells transfected with closely related TFE3 cDNA. Our findings indicate that MITF is critically involved in melanocyte differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkinson, C.A. et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395–404 (1993).

    Article  CAS  Google Scholar 

  2. Steingrimsson, E. et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nature Genet. 8, 256–263 (1994).

    Article  CAS  Google Scholar 

  3. Silvers, W.K. Microphthalmia and other considerations. in The coat colors of mice. 268–332 (Springer-Vertag, 1979).

    Chapter  Google Scholar 

  4. Tachibana, M. et al. Cochlear disorder associated with melanocyte anomaly in mice with a transgente insertional mutation. Mol. Cell. Neurosci. 3, 433–445 (1992).

    Article  CAS  Google Scholar 

  5. Asher, J.H. Jr. & Friedman, T.B. Mouse and hamster mutants as models for Waardenburg syndrome in humans. J. Med. Genet. 27, 618–626 (1990).

    Article  Google Scholar 

  6. Arias, S. Genetic heterogeneity in the Waardenburg syndrome. Birth Defects: Original Article Series 7, 87–101 (1971).

    CAS  Google Scholar 

  7. McKusick, V.A. Mendelian Inheritance in Man. 10th edn. (Johns Hopkins University Press, Baltimore, Maryland, 1992).

    Google Scholar 

  8. Farrer, L.A. et al. Waardenburg syndrome (WS) type I is caused by defects at multiple loci, one of which is near ALPP on chromosome 2: First report of the WS consortium. Am. J. Hum. Genet. 50, 902–913 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Klein, D. Historical background and evidence for dominant inheritance of the Klein-Waardenburg syndrome (type III). Am. J. Med. Genet. 14, 231–239 (1983).

    Article  CAS  Google Scholar 

  10. Shah, K.N. et al. White forelock, pigmentary disorder of irides, and long segment Hirschsprung disease; possible variant of Waardenburg syndrome. J. Pediat. 99, 432–435 (1981).

    Article  CAS  Google Scholar 

  11. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  Google Scholar 

  12. Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. An exonic mutation in the Hup2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  Google Scholar 

  13. Hoth, C.F., Milunsky, A., Lipsky, N., Scheffer, R., Clarren, S.K. & Balwin, C.T. Mutations in the paired domain of the human PAX3 gene cause KleinWaardenburg syndrome (WS-lll) as well as Waardenburg syndrome type I (WS-I). Am. J. Hum. Genet. 52, 455–462, (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chalepakis, G., Goulding, M., Read, A., Strachan, T. & Gruss, P. Molecular basis of splotch and Waardenburg Pax-3 mutations. Proc. Natl. Acad. Sci. USA 91, 3685–3689 (1994).

    Article  CAS  Google Scholar 

  15. Strachan, T. & Read, A.P. PAX genes. Curr. Opin. Genet. Dev. 4, 427–438, (1994).

    Article  CAS  Google Scholar 

  16. Tassabehji, M. et al. The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet. 4, 2131–2137 (1995).

    Article  CAS  Google Scholar 

  17. Read, A.P. & Newton, V. Mutations of PAX3 unlikely in Waardenburg syndrome type 2. Nature Genet. 5, 8 (1993).

    Article  Google Scholar 

  18. Tassabehji, M., Newton, V.E. & Read, A.P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet. 8, 251–255 (1994).

    Article  CAS  Google Scholar 

  19. Nobukuni, Y., Watanabe, A., Takeda, K., Skarka, H. & Tachibana, M. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficinency is a cause of Waardenburg syndrome type 2A. Am. J. Hum. Genet. 59, 76–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tachibana, M. et al. Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14. 1–p12.3. Hum. Mol. Genet. 3, 553–557 (1994).

    Article  CAS  Google Scholar 

  21. Nakashima, S., Sando, I., Takahashi, H. & Hashida, Y. Temporal bone histopathologic findings of Waardenburg syndrome: A case report. Laryngoscope 102, 563–567 (1992).

    Article  CAS  Google Scholar 

  22. Davis, R.L., Weintraub, H. & Lassar, A.B. Expression of single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  23. Weintraub, H. et al. The myoD gene family: Nodal point during specification of the muscle cell lineage. Science 261, 761–766 (1991).

    Article  Google Scholar 

  24. Tontonoz, P., Kim, J.B., Graves, R.A. & Spiegelrnan, B.M. ADD1: a novel helixloop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol. 13, 4753–4759 (1993).

    Article  CAS  Google Scholar 

  25. Miki, T. et al. Development of a highly efficient expression cDNA cloning system: Application to oncogene isolation. Proc. Natl Acad. Sci. USA 88, 5167–5171 (1991).

    Article  CAS  Google Scholar 

  26. Winder, A.J. Expression of a mouse tyrosinase cDNA in 3T3 Swiss mouse flbroblasts. Biochem. Biophys. Res. Comm. 178, 739–745 (1991).

    Article  CAS  Google Scholar 

  27. Bouchard, B., Fuller, B.B., Vijayasaradhi, S. & Hougnton, A.N. Induction of pigmentation in mouse fibroblasts by expression of human tyrosinase cDNA. J. Exp. Med. 169, 2029–2042 (1989).

    Article  CAS  Google Scholar 

  28. Jainchill, J.L., Aaronson, S.A. & Todaro, G.J. Murine sarcoma and leukemia viruses: Assay using clonal lines of contact-inhibited mouse cells. J. Virol. 4, 549–553 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yokoyama, T. et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucl. Acid Res. 18, 7293–7298 (1990).

    Article  CAS  Google Scholar 

  30. Hearing, V.J. & Ekel, T.M. Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. Biochem. J. 157, 549–557 (1976).

    Article  CAS  Google Scholar 

  31. Jiménez, M., Tsukamoto, K. & Hearing, V.J. Tyrosinase from two different loci are expressed by normal and by transformed melanocytes. J. Biol. Chem. 266, 1147–1156 (1991).

    PubMed  Google Scholar 

  32. Jiménez, M., Maloy, W.L. & Hearing, V.J. Specific identification of an authentic clone for mammalian tyrosinase. J. Biol. Chem. 264, 3397–3403 (1989).

    PubMed  Google Scholar 

  33. Tsukamoto, K., Jackson, I.J., Urabe, K., Montague, P.M. & Hearing, V.J. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrometautomerase. EMBO J. 11, 519–526 (1992).

    Article  CAS  Google Scholar 

  34. Horii, Y., Beeler, J.F., Sakaguchi, K., Tachibana, M. & Miki, T. Anovel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J. 13, 4776–4786 (1994).

    Article  CAS  Google Scholar 

  35. Beckmann, H., Su, L.-K. & Kadesch, T. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer μE3 motif. Genes Dev. 4, 167–179 (1990).

    Article  CAS  Google Scholar 

  36. Carr, C.S. & Sharp, P.A. A helix-loop-helix protein related to the immunoglobulin E box-binding proteins. Mol. Cell. Biol. 10, 4384–4388 (1990).

    Article  CAS  Google Scholar 

  37. Zhao, G.-Q., Zhao, Q., Zhou, X., Mattei, M.-G. & DeCrombrugghe, B. TFEC, a basic helix-ioop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation. Mol. Cell. Biol. 13, 4505–4512 (1993).

    Article  CAS  Google Scholar 

  38. Hemesath, T.J. et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 8, 2770–2780 (1994).

    Article  CAS  Google Scholar 

  39. Puck, T.T. & Marcus, P.I. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: The use of X-irradiated cells to supply conditioning factors. Proc. Nail. Acad. Sci. USA 41, 432–437 (1955).

    Article  CAS  Google Scholar 

  40. Peters, T.A., Kuijpers, W., Tonnaer, E.L., van Muijen, G.N. & Jap, P.H. Distribution and features of melanocytes during inner ear development in pigmented and albino rats. Hear. Res. 85, 169–180 (1995).

    Article  CAS  Google Scholar 

  41. Keithley, E.M., Ryan, A.F. & Feldman, M.L. Cochlear degeneration in aged rats of four strains. Hear. Res. 59, 171–178 (1992).

    Article  CAS  Google Scholar 

  42. Bentley, N.J., Eisen, T. & Goding, C.R. Melanocyte-specific expression of the human tyrosinase promoter: Activation by the microphthalmia gene product and roleoftheinitiator. Mol. Cell. Biol. 14, 7996–8006 (1994).

    Article  CAS  Google Scholar 

  43. Yasumoto, K. et al. Microphthalmra-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 14, 8058–8070 (1994).

    Article  CAS  Google Scholar 

  44. Yavuzer, U. et al. The Microphthalmia gene product interacts with retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 10, 123–134 (1995).

    CAS  PubMed  Google Scholar 

  45. Donatien, P., Surieve-Bazeille, J.E., Thody, A.J. & Taieb, A. Growth and differentiation of normal human melanocytes in a TPA-free, cholera toxin-free, low serum medium and influence of keratinocytes. Arch. Dermatol. Res. 285, 385–392 (1993).

    Article  CAS  Google Scholar 

  46. Guarini, L. et al. Modulation of the antigenic phenotype of human melanoma cells by differentiation-inducing and growth-suppressing agents. Pigment Cell Res. 2, 123–131 (1992).

    CAS  PubMed  Google Scholar 

  47. Olson, E.N. et al. Molecular control of myogenesis: antagonism between growth and differentiation. Mol. Cell. Biochem. 104, 7–13 (1991).

    Article  CAS  Google Scholar 

  48. Thayer, M.J. & Weintraub, H. Activation and repression of myogenesis in somatic cell hybrids: evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell 63, 23–32 (1990).

    Article  CAS  Google Scholar 

  49. Woloshin, P. et al. MSX1 inhibits myoD expression in fibroblast × 10T1/2 cell hybrids. Cell 82, 611–620 (1995).

    Article  CAS  Google Scholar 

  50. Powers, T.P., Shows, T.B. & Davidson, R.L. Pigment-cell-specific gene from fibroblasts are transactivated after chromosomal transfer into melanoma cells. Mol. Cell. Biol. 14, 1179–1190 (1994).

    Article  CAS  Google Scholar 

  51. Davidson, R., Ephrussi, B. & Yamamoto, K. Regulation of melanin synthesis in mammalian cells, as studied by somatic hybridization. I. Evidence for negative control. J. Cell. Physiol. 127, 115–128 (1968).

    Article  Google Scholar 

  52. Davidson, R. & Yamamoto, K. Regulation of melanin synthesis in mammalian cells, as studied by somatic hybridization. II. The level of regulation of 3,4 dihydroxyphenylalanine oxidase. Proc. Natl. Acad. Sci USA 60, 894–901 (1968).

    Article  CAS  Google Scholar 

  53. Junker, S. Persistence, suppression and re-expression of pigment formation in somatic cell hybrids between mouse melanoma cells and non-melanoma cells. J. Cell Sci. 47, 207–226 (1981).

    CAS  PubMed  Google Scholar 

  54. Hughes, A.E., Newton, V.E., Liu, X.Z. & Read, A.P. A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12–p 14.1. Nature Genet. 7, 509–512 (1994).

    Article  CAS  Google Scholar 

  55. Tamura, M. & Noda, M. Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-heiix (HLH)-typetranscriptionfactors. J. Cell. Biol. 126, 773–782 (1994).

    Article  CAS  Google Scholar 

  56. Murre, C. & Baltimore, D. The helix-loop-helix motif: structure and function. in Transcrptional Regulations (eds S.L. McKnight & K.R. Yamamoto) 861–879 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992).

    Google Scholar 

  57. Jarman, A.P., Grau, Y., Jan, L.Y. & Jan, Y.N. Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321 (1993).

    Article  CAS  Google Scholar 

  58. Dominguez, M. & Campuzano, S. Asense, a member of Drosophila achaetescute complex, is a proneural and neural differentiation gene. EMBO J. 12, 2049–2060 (1993).

    Article  CAS  Google Scholar 

  59. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  Google Scholar 

  60. Wigler, M. et al. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11, 223–232 (1977).

    Article  CAS  Google Scholar 

  61. Aroca, P., Urabe, K., Kobayashi, T., Tsukamoto, K. & Hearing, V.J. Melanin biosynthesis patterns following hormonal stimulation. J. Biol. Chem. 268, 25650–25655 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Tachibana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachibana, M., Takeda, K., Nobukuni, Y. et al. Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 14, 50–54 (1996). https://doi.org/10.1038/ng0996-50

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing