Subjects

Abstract

Alkaptonuria (AKU) occupies a unique place in the history of human genetics because it was the first disease to be interpreted as a mendelian recessive trait by Garrod in 1902. Alkaptonuria is a rare metabolic disorder resulting from loss of homogentisate 1,2 dioxygenase (HGO) activity. Affected individuals accumulate large quantities of homogentisic acid, an intermediary product of the catabolism of tyrosine and phenylalanine, which darkens the urine and deposits in connective tissues causing a debilitating arthritis. Here we report the cloning of the human HGO gene and establish that it is the AKU gene. We show that HGO maps to the same location described for AKU, illustrate that HGO harbours missense mutations that cosegregate with the disease, and provide biochemical evidence that at least one of these missense mutations is a loss–of–function mutation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    O'Brien, W.M., La Du, B.N. & Bunim, J.J. Biochemical, pathological and clinical aspects of alkaptonuria, ochronosis and ochronotic arthropaty: Review of world literature (1584–1962). Am. J. Med. 34, 813–838 (1963).

  2. 2

    La Du, B.N., Zannoni, V.G., Laster, L. & Seegmiller, J.E. The nature of the defect in tyrosine metabolism in alcaptonuria. J. Biol. Chem. 230, 251–260 (1958).

  3. 3

    Garrod, A.E. The incidence of alkaptonuria: a study in clinical individuality. Lancet 2, 1616–1620 (1902).

  4. 4

    Garrod, A.E., The Croonian Lectures on inborn errors of metabolism Lecture II. Alkaptonuria. Lancef 2, 73–79 (1908).

  5. 5

    Pollak, M.R. et al. Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nature Genet. 5, 201–204 (1993).

  6. 6

    Janocha, J. et al. The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics 19, 5–8 (1994).

  7. 7

    Montagutelli, X. et al. aku, a mutation of the mouse homologous to human alkaptonuria maps to chromosome 16. Genomics 19, 9–11 (1994).

  8. 8

    Schmidt, S.R., Müller, C.R. & Kress, W. Murine liver homogentisate 1,2-dioxygenase. Purification to homogeneity and novel biochemical properties. Eur. J. Biochem. 228, 425–430 (1995).

  9. 9

    Fernández-Cañón, J.M. & Peñalva, M. A. Fungal metabolic model for human type I hereditary tyrosinaemia. Proc. Natl. Acad. Sci. USA 92, 9132–9136 (1995).

  10. 10

    Fernández-Cañón, J.M. & Peñalva, M. A. Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus idulans and identification of its human and plant homologues. J. Biol. Chem. 270, 21199–21205 (1995).

  11. 11

    Zannoni, V.G., Seegmiller, J.E. & La Du, B. N. Nature of the defect in alkaptonuria. Nature 193, 952–953 (1962).

  12. 12

    Srsen, S. Akaptonuria (Osveta Publishers, Martin [in Slovak], (1984).

  13. 13

    Srsen, S., Srsnova, K. & Lanyi, A. Clinical manifestation of alkaptonuria in relation to age [in Slovak]. Bratis. Lek. Listy 77, 662–669 (1982).

  14. 14

    Srsen, S., Vondracek, J., Srsnova, K. & Svac, J. Analysis of the life span of alkaptonuric patients [in Slovak]. Cas. Lek. Ces. 124, 1288–1291 (1985).

  15. 15

    Zannoni, V.G., Lomtevas, N. & Goldfinger, S. Oxidation of homogentisic acid to ochronotic pigment in connective tissue. Biochim. Biophys. Acta 177, 94–105 (1969).

  16. 16

    Wolf, J.A. et al. Effects of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and an ontogenic effect in infancy. Pediatr. Res. 26, 140–144 (1989).

  17. 17

    Levine, M. New concepts in the biology and biochemistry of ascorbic acid. N. Engl. J. Med. 314, 892–902 (1986).

  18. 18

    Kamoun, P., Coudé, M., Forest, M., Montagutelli, X. & Guénet, J. L. Ascorbic acid and alkaptonuria. Eur. J. Pediatr. 151, 149 (1992).

  19. 19

    Roth, M. & Felgenhauer, W. R. Recherche de I'excrétion d'acide homogentisique urinarie chez des hétérozygotes pour I'alcaptonurie. Enzym. Biol. Clin. 9, 53–58 (1968).

  20. 20

    Fernández-Ruiz, E. et al. Mapping of the human VLA-a4 gene to chromosome 2q31-q32. Eur.J.Immunol. 22, 587–590 (1992).

Download references

Author information

Author notes

  1. José M. Fernández-Cañón and Begoña Granadino: J.M.F.-C. & B.G. contributed equally to this work.

Affiliations

  1. Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Veláuez 144, 28006, Madrid, Spain

    • José M. Fernández-Cañón
    •  & Miguel A. Peñalva
  2. Departamento de Inmunología, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Veláuez 144, 28006, Madrid, Spain

    • Begoña Granadino
    • , Daniel Beltrán–Valero De Bernabé
    •  & Santiago Rodríguez De Córdoba
  3. Unidad de Biología Molecular, Hospital de la Princesa, Universidad Autínoma de Madrid, 28006, Madrid, Spain

    • Mónica Renedo
    •  & Elena Fernández-Ruiz

Authors

  1. Search for José M. Fernández-Cañón in:

  2. Search for Begoña Granadino in:

  3. Search for Daniel Beltrán–Valero De Bernabé in:

  4. Search for Mónica Renedo in:

  5. Search for Elena Fernández-Ruiz in:

  6. Search for Miguel A. Peñalva in:

  7. Search for Santiago Rodríguez De Córdoba in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/ng0996-19

Further reading