Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Monoallelic mutation analysis (MAMA) for identifying germline mutations

Abstract

Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes1, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rustgi, A.K. Hereditary gastrointestinal polyposis and nonpolyposis syndromes. New Engl. J. Med. 331, 1694–1702 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am. J. hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Nystrom-Lathi, M. et al. Mismatch repair genes on chromosome 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage. Am. J. hum. Gen. 55, 659–665 (1994).

    Google Scholar 

  6. Powell, S.M. et al. Molecular diagnosis of familial adenomatous polyposis. New Engl. J. Med. 329, 1982–1987 (1994).

    Article  Google Scholar 

  7. Roest, P.A.M., Roberts, R.G., Sugino, S., van Ommen, G.B. & Dunnen, J.T. Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Hum. molec. Genet. 2, 1719–1721 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  9. Myers, R.M., Maniatis, T. & Lerman, L.S. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Meth. Enzymol. 155, 501–527 (1987).

    Article  CAS  Google Scholar 

  10. Cotton, R.G.H. Current methods of mutation detection. Mut. Res. 285, 125–144 (1993).

    Article  CAS  Google Scholar 

  11. Patterson, D., Jones, C., Morse, H., Rumsby, P., Miller, Y. & Davis, R. Structural gene coding for multifunctional protein carrying orotate phosphoribosyltransferase and OMP decarboxylase acitivty is located on long arm of human chromosome 3. Somat. Cell Genet. 9, 359–374 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Arfin, S.M., Cirullo, R.E., Arredondo-Vega, F.X. & Smith, M. Assignment of structural gene for asparagine synthetase to human chromosome 7. Somat. Cell Genet. 9, 517–531, (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Talavera, A. & Basilico, C. Temperature sensitive mutants of BHK cells affected in cell cycle progression. J. cell. Physiol. 92, 425–536, (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Ishioka, C. et al. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nature Genet. 5, 124–129 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Vogelstein, B. & Kinzler, K.W. p63 function and dysfunction. Cell 70, 523–528 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Patterson, D. & Carnright, D.V. Biochemical genetic analysis of pyrimidine biosynthesis in mammalian cells: I. Isolation of a mutant defective in the early steps of de novo pyrimidine synthesis. Somat. Cell Genet. 3, 483–495 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. Wasmuth, J.J. & Chu, L.-Y. Linkage in cultured Chinese hamster cells of two genes, emtB and leuS, involved in protein synthesis and isolation of cell lines with mutations in three linked genes. J. Cell Biol. 87, 697–702 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Leach, F. et al. Mutations of a mutS homolog in hereditary non-polyposis colorectal cancers. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Breukel, C. et al. CA repeat polymorphic at the D5S82 locus, proximal to APC. Nucl. Acids Res. 19, 5804 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spirio, L., Josiyn, G., Nelson, L., Leppert, M. & White, R. A CA repeat 30–70 kb downstream from the adenomatous polyposis coli (APC) gene. Nucl. Acids Res. 19, 6348 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, B. et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 54, 4590–4594 (1994).

    CAS  PubMed  Google Scholar 

  22. Soedjak, H.S. Colorimetric micromethod for protein determination with erythrosin B. Anal, Biochem. 220, 142–148 (1994).

    Article  CAS  Google Scholar 

  23. Smith, K. et al. The APC gene product in normal and tumor cells. Proc. natn. Acad. Sci. U.S.A. 90, 2846–2850 (1993).

    Article  CAS  Google Scholar 

  24. Leach, F., Hill, D., Burrell, M., Kinzler, K.W., Vogelstein, B. submitted for publication (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, N., Leach, F., Kinzler, K. et al. Monoallelic mutation analysis (MAMA) for identifying germline mutations. Nat Genet 11, 99–102 (1995). https://doi.org/10.1038/ng0995-99

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0995-99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing