Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis


GATA–3 is one member of a growing family of related transcription factors which share a strongly conserved expression pattern in all vertebrate organisms. In order to elucidate GATA–3 function using a direct genetic approach, we have disrupted the murine gene by homologous recombination in embryonic stem cells. Mice heterozygous for the GATA3 mutation are fertile and appear in all respects to be normal, whereas homozygous mutant embryos die between days 11 and 12 postcoitum (p.c.) and display massive internal bleeding, marked growth retardation, severe deformities of the brain and spinal cord, and gross aberrations in fetal liver haematopoiesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Tsai, S.-F. et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339, 446–451 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Evans, T. & Felsenfeld, G. The erythroid-specific transcription factor Eryfl: a new finger protein. Cell 58, 877–885 (1989).

    CAS  Article  Google Scholar 

  3. 3

    Yamamoto, M. et al. Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. Genes Dev. 4, 1650–1662 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Merika, M. & Orkin, S.H. DNA-binding specificity of GATA family transcription factors. Molec. cell. Biol. 13, 3999–4010 (1993).

    CAS  Article  Google Scholar 

  5. 5

    Ko, L.J. & Engel, J.D. DNA-binding specificity of GATA family transcription factors. Molec. cell. Biol. 13, 4011–4022 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Whyatt, D.J., deBoer, E. & Grosveld, F. The two zinc finger-like domains of GATA-1 have different DNA binding specificities. EMBO J. 12, 4993–5005 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Martin, D.I.K., Zon, L.I., Mutter, G. & Orkin, S.H. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344, 444–447 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Romeo, P.-H. et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344, 447–449 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Ito, E. et al. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 362, 466–469 (1993).

    CAS  Article  Google Scholar 

  10. 10

    Yomogida, K. et al. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development 120, 1759–1766 (1994).

    CAS  PubMed  Google Scholar 

  11. 11

    Whitelaw, E., Tsai, S.-F., Hogben, P. & Orkin, S.H. Regulated expression of globin chains and the erythroid transcription factor GATA-1 in mouse Sertoli cells. Molec. cell. Biol. 10, 6596–6606 (1990).

    CAS  Article  Google Scholar 

  12. 12

    Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260 (1991).

    CAS  Article  Google Scholar 

  13. 13

    Simon, M.C. et al. Rescue of erythroid development in gene targeted GATA-1 mouse embryonic stem cells. Nature Genet. 1, 92–98 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Arceci, R.J., King, A.A., Simon, M.C., Orkin, S.H. & Wilson, D.B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Molec. cell. Biol. 13, 2235–2246 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Kelley, C., Blumberg, H., zon, L.I. & Evans, T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118, 817–827 (1993).

    CAS  PubMed  Google Scholar 

  16. 16

    Laverriere, A.C. et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J. biol. Chem. 269, 23177–23184 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Tamura, S., Wang, X.-H., Maeda, M. & Futai, M. DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc. natn. Acad. Sci. U.S.A. 90, 10876–10880 (1993).

    CAS  Article  Google Scholar 

  18. 18

    George, K.M. et al. Embryonic expression and cloning of the murine GATA-3 gene. Development 120, 2673–2686 (1994).

    CAS  Google Scholar 

  19. 19

    Kornhauser, J.M. et al. Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Molec. Brain Res. 23, 100–110 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Oosterwegel, M., Timmerman, J., Leiden, J. & Clevers, H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Devel. immunol. 3.1–11 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Joulin, V. et al. A T-cell specific TCR δDNA binding protein is a member of the human GATA family. EMBO J. 10, 1809–1816 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Ko, L.J. et al. Murine and human T lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T cell receptor d gene enhancer. Molec. cell. Biol. 13, 7056–7070 (1993).

    Article  Google Scholar 

  23. 23

    Redondo, J.M., Pfohl, J.L. & Krangel, M.S. Identification of an essential site for transcriptional activation within the human T-cell receptor δ enhancer. Molec. cell. Biol. 11, 5671–5680 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Hambor, J.E., Mennone, J., Coon, M.E., Hanke, J.H. & Kavathas, P. Identification and characterization of an Alu-containing, T-cell specific enhancer located in the last intron of the human CD8αx gene. Molec. cell. Biol. 13, 7056–7070 (1993).

    CAS  Article  Google Scholar 

  25. 25

    McMahon, A. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Lindenbaum, M.H. & Grosveld, F. An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev. 4, 2075–2085 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Ng, A., George, K.M., Engel, J.D. & Linzer, D.I.H. GATA factor activity is required for the trophoblast-specific transcriptional regulation of the mouse placental lactogen I gene. Development 120, 3257–3266 (1994).

    CAS  PubMed  Google Scholar 

  28. 28

    Baribault, H., Price, J., Miyai, K. & Oshima, R.G. Mid-gestational lethality in mice lacking keratin 8. Genes Dev. 7, 1191–1202.

    CAS  Article  Google Scholar 

  29. 29

    Steger, D.J., Hecht, J.H. & Mellon, P.L. GATA-binding proteins regulate the human gonatotropin α-subunit gene in the placenta and pituitary gland. Molec. cell. Biol. 14, 5592–5602 (1994).

    CAS  Article  Google Scholar 

  30. 30

    Tsai, F.-Y. et al. An early haematopoietic defect in mice lacking the transcriptional factor GATA-2. Nature 371, 221–226 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  32. 32

    Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of proto-oncogene int-2 in mouse embryo-derived stem cells; a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    CAS  Article  Google Scholar 

  33. 33

    Laird, P.W. et al. Simplified mammalian DMA isolation procedure. Nucleic Acids Res. 19, 4293–4294 (1991).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pandolfi, P., Roth, M., Karis, A. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11, 40–44 (1995).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing