Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human artificial episomal chromosomes for cloning large DNA fragments in human cells

An Erratum to this article was published on 01 December 1994

Abstract

We have developed a human artificial episomal chromosome (HAEC) system, based on the latent replication origin of the large herpes Epstein-Barr virus, for the propagation and stable maintenance of DNA as circular minichromosomes in human cells. Individual HAECs carried human genomic inserts ranging from 60–330 kb and appeared genetically stable. An HAEC library of 1,500 independent clones carrying random human genomic fragments with average sizes of 150–200 kb was established and allowed recovery of the HAEC DNA. Our autologous HAEC system, with human DNA cloned directly in human cells, provides an important tool for functional study of large mammalian DNA regions and gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A. Mapping and sequencing the human genome. New Engl. J. Med. 320, 910–915 (1989).

    Article  CAS  Google Scholar 

  2. Murray, A.W. & Szostak, J.W. Construction of artificial chromosomes in yeast. Nature 305, 189–193 (1983).

    Article  CAS  Google Scholar 

  3. Burke, D.T., Carle, G.F. & Olson, M.V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 238, 806–812 (1987).

    Article  Google Scholar 

  4. Chumakov, I. et al. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380–387 (1992).

    Article  CAS  Google Scholar 

  5. Foote, S., Vollrath, D., Hilton, A. & Page, D.C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66 (1992).

    Article  CAS  Google Scholar 

  6. O'Connor, M., Peifer, M. & Bender, W. Construction of Large DNA segments in Escherichia coil. Science 244, 1307–1313 (1989).

    Article  CAS  Google Scholar 

  7. Hosoda, F., Nishimura, S., Uchida, H. & Ohki, M. An F factor based cloning system for large DNA fragments. Nucl. Acids Res. 18, 3863–3869 (1990).

    Article  CAS  Google Scholar 

  8. Shizuya, H. et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. natn. Acad. Sci. U.S.A. 89, 8794–8797 (1992).

    Article  CAS  Google Scholar 

  9. Sternberg, N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. natn. Acad. Sci. U.S.A. 87, 103–107 (1990).

    Article  CAS  Google Scholar 

  10. Loannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  11. Gitschier, J. et al. Characterization of the human factor VIII gene. Nature 312, 326–330 (1984).

    Article  CAS  Google Scholar 

  12. Rommens, J.M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065 (1989).

    Article  CAS  Google Scholar 

  13. Wallace, M.R. et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181–186 (1990).

    Article  CAS  Google Scholar 

  14. Grosveld, F., van Assendelft, G.B., Greaves, D.R., Kollias, G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  15. Pavan, W.J., Hieter, P. & Reeves, R.H. Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome. Molec. cell. Biol. 10, 4163–4169 (1990).

    Article  CAS  Google Scholar 

  16. Huxley, C., Hagino, Y., Schlessinger, D. & Olson, M.V. The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion. Genomics 9, 742–750 (1991).

    Article  CAS  Google Scholar 

  17. Strauss, W.M. & Jaenisch, R. Molecular complementation of a collagen mutation in mammalian cells using yeast artificial chromosomes. EMBO J. 11, 417–422 (1992).

    Article  CAS  Google Scholar 

  18. Strauss, W.M., Dausman, J., Beard, C., Johnson, C., Lawrence, J.B. & Jaenisch, R. Germ line transmission of yeast artificial chromosome spanning the murine α1 (I) collagen locus. Science 259, 1904–1907 (1993).

    Article  CAS  Google Scholar 

  19. Choi, T.K. et al. Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome. Nature Genet. 4, 117–123 (1993).

    Article  CAS  Google Scholar 

  20. Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).

    Article  CAS  Google Scholar 

  21. Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  Google Scholar 

  22. Yates, J.L., Warren, N. & Sugden, B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812–815 (1985).

    Article  CAS  Google Scholar 

  23. Kioussis, D. et al. Expression and rescuing of a cloned human tumour necrosis factor gene using an EBV-based shuttle cosmid vector. EMBO J. 6, 355–361 (1987).

    Article  CAS  Google Scholar 

  24. Glaser, R. & Nonoyama, M. Host cell regulation of induction of Epstein-Barr virus. J. Virol. 14, 174–176 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, T.-Q. & Vos, J.-M.H. Packaging of 200kb engineered DNA as infectious Epsein-Barr virus. Int. J. genome Res. 1, 45–57 (1992).

    CAS  Google Scholar 

  26. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  Google Scholar 

  27. Baer, R. et al. DNA sequence and expression of the B95–8 Epstein-Barr virus genome. Nature 310, 207–211 (1984).

    Article  CAS  Google Scholar 

  28. Nelson, D.L. et al. Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc. natn. Acad. Sci. U.S.A. 86, 6686–6690 (1989).

    Article  CAS  Google Scholar 

  29. Green, E.D., Riethman, H.C., Dutchik, J.E. & Olson, M.V. Detection and characterization of chimeric yeast artificial-chromosome clones. Genomics 11, 658–669 (1991).

    Article  CAS  Google Scholar 

  30. Burke, D.T. & Olson, M.V. Preparation of clone libraries in yeast artificial-chromosome vectors. Methods Enzymol. 194, 251–270 (1991).

    Article  CAS  Google Scholar 

  31. Ruiz, J.C., Choi, K.H., von Hoff, D.D., Robinson, I.B. & Wahl, G.M. Autonomously replicating episomes contain mdr1 genes in a multidrug-resistant human cell line. Molec. cell. Biol. 9, 109–115 (1989).

    Article  CAS  Google Scholar 

  32. Klaman, L.D., Hurley, E.A. & Thorley-Lawson, D.A. Is there a unique episome in EBV transformed B cells? Virology 185, 883–887 (1991).

    Article  CAS  Google Scholar 

  33. Yates, J.L., Warren, N., Reisman, D. & Sugden, B. A cis-acting element from the Epstin-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. natn. Acad. Sci. U.S.A. 81, 3806–3810 (1984).

    Article  CAS  Google Scholar 

  34. Lupton, S. & Levine, A.J. Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Molec. cell. Biol. 5, 2533–2542 (1985).

    Article  CAS  Google Scholar 

  35. Krysan, P.J., Haase, S.B. & Calos, M.P. Isolation of human sequences that replicate autonomously in human cells. Molec. cell. Biol. 9, 1026–1033 (1989).

    Article  CAS  Google Scholar 

  36. Nonet, G.H. & Wahl, G.M. Introduction of YACs containing a putative mammalian replication origin into mammalian cells can generate structures that replicate autonomously. Somat. cell. molec. Genet. 19, 171–192 (1993).

    Article  CAS  Google Scholar 

  37. Featherstone, T. & Huxley, C. Extrachromasomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics 17, 267–278 (1993).

    Article  CAS  Google Scholar 

  38. Reisman, D., Yates, J.L. & Sugden, B. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Molec. cell. Biol. 5, 1822–1832 (1985).

    Article  CAS  Google Scholar 

  39. Middleton, T. & Sugden, B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J. Virol. 68, 4067–4071 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jankelevich, S., Kolman, J.L., Bodnar, J.W. & Miller, G. A nuclear matrix attachment region organizes the Epstein-Barr viral plasmid in Raji cells into a single DNA domain. EMBO J. 11, 1165–1176 (1992).

    Article  CAS  Google Scholar 

  41. Murray, A.W., Shultes, N.P. & Szostak, J.W. Chromosome length controls mitotic chromosome segregation in yeast. Cell 45, 529–536 (1986).

    Article  CAS  Google Scholar 

  42. Curiel, D. Gene Transfer Mediated by Adenovirus-Polylysine-DNA Complexes. In Viruses in Human Gene Therapy (ed. Vos, J-M. H. ) 164–201 (Carolina Academic Press, Durham, NC, 1994).

    Google Scholar 

  43. Vos, J.-M.H Herpesviruses as Genetic Vectors. In Viruses in Human Gene Therapy(ed. Vos, J-M.H. )109–141 (Carolina Academic Press, Durham, NC, 1994).

    Google Scholar 

  44. Bentley, D.R. et al. The development and application of automated gridding for efficient screening of yeast and bacterial ordered libraries. Genomics 12, 534–541 (1992).

    Article  CAS  Google Scholar 

  45. Pierce, J.C., Sternberg, N. & Sauer, B. A mouse genomic library in the bacteriophage P1 cloning system: organization and characterization. Mamm Genome 3, 550–558 (1992).

    Article  CAS  Google Scholar 

  46. Collins, A. Replicating of cultured human cells on polyester mesh. J. tiss. cult. Meth. 10, 209–214 (1987).

    Article  Google Scholar 

  47. Winocour, E. & Keshet, I. Indiscriminate recombination in simian virus 40-infected monky cells. Proc. natn. Acad. Sci. U.S.A. 77, 4861–1865 (1980).

    Article  CAS  Google Scholar 

  48. Hammerschmidt, W. & Sugden, B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55, 427–433 (1988).

    Article  CAS  Google Scholar 

  49. Hall, C.V., Jacob, P.E., Ringold, G.M. & Lee, F. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. molec. appl. Genet. 2, 101–109 (1983).

    CAS  Google Scholar 

  50. Carroll, S.M. et al. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Molec. cell. Biol. 7, 1740–1750 (1987).

    Article  CAS  Google Scholar 

  51. Eckhardt, T. A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1, 584–588 (1978).

    Article  CAS  Google Scholar 

  52. Mickel, S., Arena, V. Jr. & Bauer, W. Physical properties and gel electrophoresis behavior of R 12-derived plasmid DNAs. Nucl. Acids Res. 4, 1465–1482 (1977).

    Article  CAS  Google Scholar 

  53. Liu, P. et al. Dual Alu polymerase chain reaction primers and conditions for isolation of human chromosome painting probes from hybrid cells. Cancer Genet. Cytogenet. 65, 93–99 (1993).

    Article  CAS  Google Scholar 

  54. Rooney, D.E. & Czepulkowski, B.H. (eds) Human cytogenetics: a practical approach (IRL Press, Oxford, 1986).

    Google Scholar 

  55. Lawrence, J.B., Villnave, C.A. & Singer, R.H., Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell 52: 51–61 (1988).

    Article  CAS  Google Scholar 

  56. Hennessy, K., Heller, M., van Santen, V., Kieff, E. Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein-Barr nuclear antigen. Science 220, 1396–1398 (1983).

    Article  CAS  Google Scholar 

  57. Deininger, P.L., Jolly, D.J., Rubin, C.M., & Schmid, C.W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J. molec. Biol. 151, 17–33 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, TQ., Fenstermacher, D. & Vos, JM. Human artificial episomal chromosomes for cloning large DNA fragments in human cells. Nat Genet 8, 33–41 (1994). https://doi.org/10.1038/ng0994-33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0994-33

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing