Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice

A Correction to this article was published on 01 November 1993

Abstract

Overexpression of the gene encoding the β–amyloid precursor protein (APP) may have a key role in the pathogenesis of both Alzheimer's disease (AD) and Down Syndrome (DS). We have therefore introduced a 650 kilobase (kb) yeast artificial chromosome (YAC) that contains the entire, unrearranged 400 kb human APP gene into mouse embryonic stem (ES) cells by lipid–mediated transfection. ES lines were generated that contain a stably integrated, unrearranged human APP gene. Moreover, we demonstrate germ line transmission of the APP YAC in transgenic mice and expression of human APP mRNA and protein at levels comparable to endogenous APP. This transgenic strategy may prove invaluable for the development of mouse models for AD and DS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Giaccone, G. et al. Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci. Lett. 97, 232–238 (1989).

    CAS  Article  Google Scholar 

  2. 2

    Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    CAS  Article  Google Scholar 

  3. 3

    Masters, C.L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. natn. Acad. Sci. U.S.A. 82, 4245–4249 (1985).

    CAS  Article  Google Scholar 

  4. 4

    Masters, C.L. et al. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757–2763 (1985).

    CAS  Article  Google Scholar 

  5. 5

    Kemper, T. Neuroanatomical and neuropathological changes in normal aging and in dementia. In Clinical Neurology of Aging (ed. Albert, M.L.) 9–52 (Oxford University Press, New York, 1984).

    Google Scholar 

  6. 6

    Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L. & Cork, L.C. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 235, 873–877 (1987).

    CAS  Article  Google Scholar 

  7. 7

    Mann, D.M. & Esiri, M.M. The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down's syndrome. J. neurol. Sci. 89, 169–179 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Rumble, B. et al. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. New Engl. J. Med. 320, 1446–1452 (1989).

    CAS  Article  Google Scholar 

  9. 9

    Goldgaber, D., Lerman, M.I., McBride, O.W., Saffiotti, U. & Gajdusek, D.C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235, 877–880 (1987).

    CAS  Article  Google Scholar 

  10. 10

    Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    CAS  Article  Google Scholar 

  11. 11

    Tanzi, R.E. et al. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235, 880–884 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H. & Sakaki, Y. Genomic organization of the human amyloid β-protein precursor gene. Gene 87, 257–263 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Ponte, P. et al. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525–527 (1988).

    CAS  Article  Google Scholar 

  14. 14

    Golde, T.E., Estus, S., Usiak, M., Younkin, L.H. & Younkin, S.G. Expression of β amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer's disease using PCR. Neuron 4, 253–267 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Weidemann, A. et al. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115–26 (1989).

    CAS  Article  Google Scholar 

  16. 16

    Haass, C., Koo, E.H., Mellon, A., Hung, A.Y. & Selkoe, D.J. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–503 (1992).

    CAS  Article  Google Scholar 

  17. 17

    Sisodia, S.S. β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc. natn. Acad. Sci. U.S.A. 89, 6075–6079 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Esch, F.S. et al. Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 1122–4 (1990).

    CAS  Article  Google Scholar 

  19. 19

    Sisodia, S.S., Koo, E.H., Beyreuther, K., Unterbeck, A. & Price, D.L. Evidence that β-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–5 (1990).

    CAS  Article  Google Scholar 

  20. 20

    Anderson, J.P. et al. Exact cleavage site of Alzheimer amyloid precursor in neuronal PC–12 cells. Neurosci. Lett. 128, 126–128 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Wang, R., Meschia, J.F., Cotter, R.J. & Sisodia, S.S. Secretion of the β/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells. J. biol. Chem. 266, 16960–16964 (1991).

    CAS  PubMed  Google Scholar 

  22. 22

    Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. & Younkin, S.G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Selkoe, D.J. The molecular pathology of Alzheimer's disease. Neuron 6, 487–498 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Price, D.L., Walker, L.C., Martin, L.J. & Sisodia, S.S. Amyloidosis in aging and Alzheimer's disease. Am. J. Pathol. 141, 767–772 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Sisodia, S.S. & Price, D.L. Amyloidogensis in Alzheimer's disease: basic biology and animal models. Curr. Opin. Neurobiol. 2, 648–652 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Chartier-Harlin, M.C. et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    CAS  Article  Google Scholar 

  30. 30

    Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    CAS  Article  Google Scholar 

  31. 31

    Murrell, J., Farlow, M., Ghetti, B. & Benson, M.D. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Naruse, S. et al. Mis-sense mutation val-ile in exon-17 of amyloid precursor protein gene in Japanese familial Alzheimer's disease. Lancet 337, 978–979 (1991).

    CAS  Article  Google Scholar 

  33. 33

    Mullan, M. et al. A pathogenetic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet. 1, 345–347 (1992).

    CAS  Article  Google Scholar 

  34. 34

    Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    CAS  Article  Google Scholar 

  35. 35

    Van Broeckhoven, C. et al. Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248, 1120–1122 (1990).

    CAS  Article  Google Scholar 

  36. 36

    Hendriks, L. et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet. 1, 218–221 (1992).

    CAS  Article  Google Scholar 

  37. 37

    Kawabata, S., Higgins, G.A. & Gordon, J.W. Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354, 476–478 (1991). Retracted, Nature 356, 23 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Quon, D. et al. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352, 239–41 (1991).

    CAS  Article  Google Scholar 

  39. 39

    Wirak, D.O. et al. Deposits of amyloid β protein in the central nervous system of transgenic mice. Science 253, 323–325 (1991). Retracted, Science 255, 1445 (1992).

    CAS  Article  Google Scholar 

  40. 40

    Kammesheidt, A. et al. Deposition of β/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl-terminal fragment of the Alzheimer amyloid precursor in the brain. Proc. natn. Acad. Sci. U.S.A. 89, 10857–10861 (1992).

    CAS  Article  Google Scholar 

  41. 41

    Brinster, R.L., Allen, J.M., Behringer, R.R., Gelinas, R.E. & Palmiter, R.D. Introns increase transcriptional efficiency in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 85, 836–840 (1988).

    CAS  Article  Google Scholar 

  42. 42

    Schedl, A., Montoliu, L., Kelsey, G. & Schutz, G. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261 (1993).

    CAS  Article  Google Scholar 

  43. 43

    Jakobovits, A. et al. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362, 255–258 (1993).

    CAS  Article  Google Scholar 

  44. 44

    Choi, T.K. et al. Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome. Nature Genet. 4, 117–123 (1993).

    CAS  Article  Google Scholar 

  45. 45

    Strauss, W.M. et al. Germ-line transmission of a yeast artificial chromosome spanning the murine Col1A1 (a 1 (I)Collagen) locus. Science 259, 1904–1907 (1993).

    CAS  Article  Google Scholar 

  46. 46

    Chumakov, I. et al. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380–387 (1992).

    CAS  Article  Google Scholar 

  47. 47

    Hieter, P. et al. Yeast artificial chromosomes: promises kept and pending. In Genome Analysis Volume I: Genetic and Physical Mapping (eds Davies, K.E. & Tilghman, S.) 83–120 (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  48. 48

    Jucker, M. et al. Age-associated inclusions in normal and transgenic mouse brain. Science 255, 1443–1445 (1992).

    CAS  Article  Google Scholar 

  49. 49

    Bradley, A. Production and analysis of chimeric mice. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 113–151 (IRL Press, Oxford, 1987).

    Google Scholar 

  50. 50

    Robertson, E.J. Embryo-derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 71–112 (IRL Press, Oxford, 1987).

    Google Scholar 

  51. 51

    Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    CAS  Article  Google Scholar 

  52. 52

    Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acid Res. 16, 1215 (1988).

    CAS  Article  Google Scholar 

  53. 53

    Gardiner, K., Laas, W. & Patterson, D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Som. Cell Molec. Genet. 12, 185–195 (1986).

    CAS  Article  Google Scholar 

  54. 54

    Anand, R., Villasante, A. & Tyler-Smith, C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucl. Acids Res. 17, 3425–3433 (1989).

    CAS  Article  Google Scholar 

  55. 55

    Davis, R.W. et al. Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 65, 404–411 (1980).

    CAS  Article  Google Scholar 

  56. 56

    Soriano, P., Montgomey, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    CAS  Article  Google Scholar 

  57. 57

    Linney, E. & Donerly, S. DNA from F9 PyEC mutants increase expression of heterologous genes in transfected F9 cells. Cell 35, 693–699 (1983).

    CAS  Article  Google Scholar 

  58. 58

    Lamb, B.T., Satyamoorthy, K., Li, L., Solter, D. & Howe, C.C. CpG methylation of an endogenous retroviral enhancer inhibits transcription factor binding and activity. Gene Exp. 1, 185–196 (1991).

    CAS  Google Scholar 

  59. 59

    Connelly, C., McCormick, M.K., Shero, J. & Hieter, P. Polyamines eliminate an extreme size bias against transformation of large yeast artificial chromosome DNA. Genomics 10, 10–16 (1991).

    CAS  Article  Google Scholar 

  60. 60

    Ito, H., Fukuda, Y., Murata, K. & Kumura, A. Transformation of intact cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Sisodia, S.S., Sollner-Webb, B. & Cleveland, D.W. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Molec. cell. Biol. 7, 3602–3612 (1987).

    CAS  Article  Google Scholar 

  62. 62

    Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).

    CAS  Article  Google Scholar 

  63. 63

    Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H. & Sakaki, Y. Genomic organization of the human amyloid β-protein precursor gene corrigendum. Gene 102, 291–292 (1991).

    CAS  Article  Google Scholar 

  64. 64

    Tassone, F., Cheng, S. & Gardiner, K. Analysis of chromosome 21 yeast artificial chromosome (YAC) clones. Am. J. hum. Genet. 51, 1251–1264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Wirak, D.O. et al. Regulatory region of human amyloid precursor protein (APP) gene promotes neuron-specific gene expression in the CNS of transgenic mice. EMBO J. 10, 289–96 (1991).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lamb, B., Sisodia, S., Lawler, A. et al. Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice. Nat Genet 5, 22–30 (1993). https://doi.org/10.1038/ng0993-22

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing