Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct and overlapping functions of allelic forms of human mannose binding protein

Abstract

Human mannose binding protein (MBP) is a C–type serum lectin involved in first–line host defense against a variety of bacterial, fungal and viral pathogens. Recently an association was found between low levels of serum MBP and an increased frequency of recurrent infections in infants. A particular genotype, in which glycine is substituted by aspartic acid at codon 54 of MBP in the fifth collagen repeat, shows apparent concordance with the clinical phenotype. We report, however, that this genotype occurs in 5% of the population and encodes a functional protein. Our results indicate that the Gly54Asp allele does not account for a deficiency state, but instead suggest that MBP may have two predominant allelic forms that have overlapping function and differ only in their ability to activate the classical pathway of complement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Super, M. et al. Association of low levels of mannan-binding protein with a common defect of opsonization. Lancet (ii), 1236–1238 (1989).

    Article  Google Scholar 

  2. Ezekowitz, R.A.B. Ante-antibody immunity. Curr. Biol. 1, 60–62 (1991).

    Article  CAS  Google Scholar 

  3. Ezekowitz, R.A.B., Day, L. & Herman, G. A human mannose-binding protein is an acute phase reactant that shares sequence homology with other vertebrate lectins. J. exp. Med. 167, 1034–1046 (1988).

    Article  CAS  Google Scholar 

  4. Kozutsumi, Y., Kawasaki, T. & Yamashina, I. Isolation and characterization of a mannan-binding protein from rabbit serum. Biochem. biophys. Res. Commun. 95, 658–664 (1980).

    Article  CAS  Google Scholar 

  5. Mizuno, T., Kozutsumi, Y., Kawasaki, T. & Yamashina, I. Isolation and characterization of a mannose-binding protein from rat liver. J. biol. Chem. 256, 4247–4256 (1981).

    CAS  PubMed  Google Scholar 

  6. Kawasaki, N., Kawasaki, T. & Yamashura, I. Isolation and characterization of a mannose-binding protein from human serum. J. Biochem. 94, 937–947 (1983).

    Article  CAS  Google Scholar 

  7. Lu, J.H., Thiel, S., Wiedmann, H., Timpl, R. & Reid, K.B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex of the classical pathway of complement without involvement of C1q. J. Immunol. 144, 2287–2294 (1990).

    CAS  PubMed  Google Scholar 

  8. Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. biol. Chem. 263, 9557–9560 (1988).

    CAS  PubMed  Google Scholar 

  9. Kawasaki, T., Etoh, R. & Yamashura, I. Isolation and characterization of a mannose-binding protein from rabbit liver. Biochem. biophys. Res. Commun. 81, 1018–1024 (1978).

    Article  CAS  Google Scholar 

  10. Kuhlman, M., Joiner, K. & Ezekowitz, R.A.B. The human mannose-binding protein functions as an opsonin. J. exp. Med. 169, 1733–1745 (1989).

    Article  CAS  Google Scholar 

  11. Ezekowitz, R.A.B., Kuhlman, M., Groopman, J. & Byrn, R. A human serum mannose-binding protein inhibits in vitro infection by the human immunodefiency virus. J. exp. Med. 169, 185–196 (1989).

    Article  CAS  Google Scholar 

  12. Janeway, C.A. Approaching the Asymptote: Evolution and Revolution in Immunology 1–13 (Cold Spring Harbor Symp. Quant. Biol., 1989).

    Google Scholar 

  13. Schweinle, J., Ezekowitz, R.A.B., Tenner, A. & Joiner, K. Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J. clin. Invest. 84, 1821–1829 (1989).

    Article  CAS  Google Scholar 

  14. Ohta, M., Okada, M., Yamashina, I. & Kawasaki, T. The mechanisms of carbohydrate-mediated complemxent activation by the serum mannose-binding protein. J. biol. Chem. 265, 1980–1984 (1990).

    CAS  PubMed  Google Scholar 

  15. Ikeda, K., Sannoh, T., Kawasaki, N., Kawasaki, T. & Yamashina, I. Serum lectin with known structure activates complement through the classical pathway. J. biol. Chem. 262, 7451 (1987).

    CAS  PubMed  Google Scholar 

  16. Hammarstrom, L., Lefranc, G., Lefranc, M.P., Perrson, M.A.A. & Smith, C.E.I. in Immunoglobulin Subclass Deficiencies (eds Hanson, L.A., Soderstrom, T. & Oxelius, V-A.) 50–56 (Karger, Basel, 1986).

    Google Scholar 

  17. Sumiya, M. et al. Molecular basis of opsonic defect in immunodeficient children. Lancet 337, 1569–1570 (1991).

    Article  CAS  Google Scholar 

  18. Higuchi, R. Amplifications 2, 1 (1989).

    Google Scholar 

  19. Gillies, S.D. et al. 1989 Expression of human anti-tetanus toxoid antbody in transfected murine myeloma cells. BioTechnology 7, 799–804 (1989).

    CAS  Google Scholar 

  20. Laemlli, N.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  Google Scholar 

  21. Super, M., Levinsky, R.J. & Turner, M.W. The level of mannan-binding protein regulates the binding of complement-derived opsonins to mannan and zymosan at low serum concentrations. Clin. exp. Immunol. 79, 144–150 (1990).

    Article  CAS  Google Scholar 

  22. Shyur, S-D. & Hill, H.R. Immunodeficiency in the 1990s. Pediatr. infect. Dis. J. 10, 595–611 (1991).

    Article  CAS  Google Scholar 

  23. Jacenko, O., Olsen, B.R. & LuValle, P. Organization and Regulation of Collagen Genes. Crit. Rev. Eukaryotic Gene Expression 1, 327–353 (1991).

    CAS  Google Scholar 

  24. Reid, K.B. Molecular cloning and characterization of the complementary DNA and gene coding for the B-chain of subcomponent C1q of the human complement system. Biochem. J. 231, 729–735 (1985).

    Article  CAS  Google Scholar 

  25. Benson, B. et al. Structure of canine pulmonary surfactant apoprotein: cDNA and complete amino acid sequence. Proc. Natn Acad. Sci. U.S.A. 82, 6379–6383 (1985).

    Article  CAS  Google Scholar 

  26. Floras, J. et al. Isolation and characterization of cDNA clones for the 35-kDa pulmonary surfactant-associated protein. J. biol. Chem. 261, 9029–9033.

  27. Malhotra, R., Thiel, S., Reid, K.B.M. & Sim, R. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J. exp. Med. 172, 955–959 (1990).

    Article  CAS  Google Scholar 

  28. Childs, R.A., Feizi, T., Yuen, C.T., Drickamer, K. & Queenberry, M.S. Differential recognition of core and terminal portions of oligosaccharide ligands by carbohydrate recognition domains of two mannose-binding proteins. J. biol. Chem. 265, 20770–20777 (1990).

    CAS  PubMed  Google Scholar 

  29. Weis, I.W.R., Kahn, R., Foume, K., Drickamer & Henrickson, W.A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 1608–1615 (1991).

    Article  CAS  Google Scholar 

  30. Ezekowitz, R.A.B. Antigens coming to a sticky end. Curr. Biol. 2, 147–149 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Super, M., Gillies, S., Foley, S. et al. Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet 2, 50–55 (1992). https://doi.org/10.1038/ng0992-50

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0992-50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing