Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C

Abstract

Usher syndrome type 1 (USH1) is an autosomal recessive sensory defect involving congenital profound sensorineural deafness, vestibular dysfunction and blindness (due to progressive retinitis pigmentosa)1. Six different USH1 loci have been reported. So far, only MYO7A (USH1B), encoding myosin VIIA (ref. 2), has been identified as a gene whose mutation causes the disease. Here, we report a gene underlying USH1C (MIM 276904), a USH1 subtype described in a population of Acadian descendants from Louisiana3 and in a Lebanese family4. We identified this gene (USH1C), encoding a PDZ-domain–containing protein, harmonin, in a subtracted mouse cDNA library derived from inner ear sensory areas. In patients we found a splice-site mutation, a frameshift mutation and the expansion of an intronic variable number of tandem repeat (VNTR). We showed that, in the mouse inner ear, only the sensory hair cells express harmonin. The inner ear Ush1c transcripts predicted several harmonin isoforms, some containing an additional coiled-coil domain and a proline- and serine-rich region. As several of these transcripts were absent from the eye, we propose that USH1C also underlies the DFNB18 form of isolated deafness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of the IVS5-2delA mutation in the consanguineous Lebanese LB7 family4.
Figure 2: Structure of the VNTR of the USH1C intron 5.
Figure 3: Analysis of Ush1c expression in the mouse inner ear.
Figure 4: RT–PCR analysis of Ush1c expression in mouse tissues.
Figure 5: Distribution of harmonin in the mouse inner ear at birth.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kimberling, W.J. & Moller, C. Clinical and molecular genetics of Usher syndrome. J. Am. Acad. Audiol. 6, 63–72 (1995).

    CAS  PubMed  Google Scholar 

  2. Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61 (1995).

    Article  CAS  Google Scholar 

  3. Smith, R.J. et al. Localization of two genes for Usher syndrome type I to chromosome 11. Genomics 14, 995–1002 (1992).

    Article  CAS  Google Scholar 

  4. Saouda, M. et al. The Usher syndrome in the Lebanese population and further refinement of the USH2A candidate region. Hum. Genet. 103, 193–198 (1998).

    Article  CAS  Google Scholar 

  5. Erkman, L. et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606 (1996).

    Article  CAS  Google Scholar 

  6. El-Amraoui, A. et al. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells . Hum. Mol. Genet. 5, 1171– 1178 (1996).

    Article  CAS  Google Scholar 

  7. Probst, F.J. et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–1447 (1998).

    Article  CAS  Google Scholar 

  8. Yasunaga, S. et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nature Genet. 21, 363–369 (1999).

    Article  CAS  Google Scholar 

  9. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96 , 437–446 (1999).

    Article  CAS  Google Scholar 

  10. Cohen-Salmon, M., El-Amraoui, A., Leibovici, M. & Petit, C. Otogelin: a glycoprotein specific to the acellular membranes of the inner ear. Proc. Natl Acad. Sci. USA 94, 14450 –14455 (1997).

    Article  CAS  Google Scholar 

  11. Verpy, E., Leibovici, M. & Petit, C. Characterization of otoconin-95, the major protein of murine otoconia, provides insights into the formation of these inner ear biominerals . Proc. Natl Acad. Sci. USA 96, 529– 534 (1999).

    Article  CAS  Google Scholar 

  12. Scanlan, M.J. et al. Characterization of human colon cancer antigens recognized by autologous antibodies. Int. J. Cancer 76, 652–658 (1998).

    Article  CAS  Google Scholar 

  13. Scanlan, M.J. et al. Isoforms of the human PDZ-73 protein exhibit differential tissue expression. Biochim. Biophys. Acta 1445, 39–52 (1999).

    Article  CAS  Google Scholar 

  14. Kobayashi, I. et al. Identification of an autoimmune enteropathy-related 75-kilodalton antigen. Gastroenterology 117, 823– 830 (1999).

    Article  CAS  Google Scholar 

  15. Ponting, C.P., Phillips, C., Davies, K.E. & Blake, D.J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19, 469–479 ( 1997).

    Article  CAS  Google Scholar 

  16. Fanning, A.S. & Anderson, J.M. Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439 (1999).

    Article  CAS  Google Scholar 

  17. Higgins, M.J. et al. Contig maps and genomic sequencing identify candidate genes in the usher 1C locus. Genome Res. 8, 57 –68 (1998).

    Article  CAS  Google Scholar 

  18. DeAngelis, M.M. et al. Assembly of a high-resolution map of the Acadian Usher syndrome region and localization of the nuclear EF-hand acidic gene. Biochim. Biophys. Acta 1407, 84–91 (1998).

    Article  CAS  Google Scholar 

  19. Senapathy, P., Shapiro, M.B. & Harris, N.L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183, 252–278 (1990).

    Article  CAS  Google Scholar 

  20. Bidichandani, S.I., Ashizawa, T. & Patel, P.I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure . Am. J. Hum. Genet. 62, 111– 121 (1998).

    Article  CAS  Google Scholar 

  21. Sudol, M. From Src homology domains to other signaling modules: proposal of the ‘protein recognition code’. Oncogene 17, 1469 –1474 (1998).

    Article  CAS  Google Scholar 

  22. Jain, P.K. et al. A gene for recessive nonsyndromic sensorineural deafness (DFNB18) maps to the chromosomal region 11p14–p15.1 containing the Usher syndrome type 1C gene. Genomics 50, 290– 292 (1998).

    Article  CAS  Google Scholar 

  23. Simmler, M.-C. et al. Targeted disruption of otogelin results in deafness and severe imbalance. Nature Genet. 24, 139–143 (2000).

    Article  CAS  Google Scholar 

  24. Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307 (1997).

    Article  CAS  Google Scholar 

  25. Sahly, I., El-Amraoui, A., Abitbol, M., Petit, C. & Dufier, J.L. Expression of myosin VIIA during mouse embryogenesis. Anat. Embryol. (Berl) 196, 159–170 (1997).

    Article  CAS  Google Scholar 

  26. Wolfrum, U., Liu, X., Schmitt, A., Udovichenko, I.P. & Williams, D.S. Myosin VIIa as a common component of cilia and microvilli . Cell Motil. Cytoskeleton 40, 261– 271 (1998).

    Article  CAS  Google Scholar 

  27. Steel, K.P. Inherited hearing defects in mice. Annu. Rev. Genet. 29, 675–701 (1995).

    Article  CAS  Google Scholar 

  28. Hubank, M. & Schatz, D.G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res. 22, 5640–5648 (1994).

    Article  CAS  Google Scholar 

  29. Legan, P.K., Rau, A., Keen, J.N. & Richardson, G.P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem. 272 , 8791–8801 (1997).

    Article  CAS  Google Scholar 

  30. Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387– 395 (1984).

    Article  CAS  Google Scholar 

  31. Bitner-Glindzicz, M. et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nature Genet. 26, 56–60 ( 2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Loiselet for collaboration; S. Bundey, M. Batzer, M. DeAngelis, P. Deininger, J. Doucet, M. Pelias and S. Savas for clinical and genetic analysis of Usher patients; J.-P. Hardelin and S. Safieddine for critical reading of the manuscript; M. Grati, B. Boeda and M. Cohen-Salmon for providing us with mouse RNA; M. Mustapha and L. Gresh for advice; and S. Chardenoux and O. Ardouin for aid with figure drawing. This work was supported by grants from the European Economic Community (QLG2-CT-1999-00988), Retina France, Fondation pour la Recherche Médicale, König Forschung contra Blindheit Initiative Usher Syndrome, CEDRE funds (968/R), the Foundation Fighting Blindness, the Deafness Research Foundation NIHR01 DC02530, and NIDCD R03 DC04530, and by C. and J.-P. Bernais donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Petit.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verpy, E., Leibovici, M., Zwaenepoel, I. et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26, 51–55 (2000). https://doi.org/10.1038/79171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing