Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sry requires a CAG repeat domain for male sex determination in Mus musculus

Abstract

SRY, the mammalian Y-chromosomal sex-determining gene1,2,3, encodes a protein characterized by a DNA-binding and -bending domain referred to as the HMG box4,5. Despite the pivotal role of this gene, only the HMG box region has been conserved through evolution6,7, suggesting that SRY function depends solely on the HMG box and therefore acts as an architectural transcription factor8. In mice (genus Mus) Sry also includes a large CAG trinucleotide repeat region encoding a carboxy-terminal glutamine-rich domain that acts as a transcriptional trans-activator in vitro9. The absence of this or any other potential trans-activating domain in other mammals1,9, however, has raised doubts as to its biological relevance. To test directly whether the glutamine-rich region is required for Sry function in vivo, we created truncation mutations of the Mus musculus musculus Sry gene and tested their ability to induce testis formation in XX embryos using a transgenic mouse assay. Sry constructs that encode proteins lacking the glutamine-rich region were unable to effect male sex determination, in contrast to their wild-type counterparts. We conclude that the glutamine-rich repeat domain of the mouse Sry protein has an essential role in sex determination in vivo, and that Sry may act via a fundamentally different biochemical mechanism in mice compared with other mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mouse Sry protein.
Figure 2: Constructs used in this study and ability of each to cause sex reversal.
Figure 3: SryStop2 transgene expression in 11.
Figure 4: Size and DNA binding properties of mutant Sry proteins.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sinclair, A.H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article  CAS  Google Scholar 

  2. Gubbay, J. et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  CAS  Google Scholar 

  3. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article  CAS  Google Scholar 

  4. Ferrari, S. et al. SRY, like HMG1, recognises sharp angles in DNA. EMBO J. 11, 4497–4509 (1992).

    Article  CAS  Google Scholar 

  5. Harley, V.R. et al. DNA binding activity of recombinant SRY from normal males and XY Females. Science 255, 453–456 (1992).

    Article  CAS  Google Scholar 

  6. Tucker, P.K. & Lundrigan, B.L. Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364, 715–717 (1993).

    Article  CAS  Google Scholar 

  7. Whitfield, L.S., Lovell-Badge, R. & Goodfellow, P.N. Rapid sequence evolution of the mammalian sex determining gene SRY. Nature 364, 713–715 (1993).

    Article  CAS  Google Scholar 

  8. Grosschedl, R., Giese, K. & Pagel, J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10, 94–100 (1994).

    Article  CAS  Google Scholar 

  9. Dubin, R.A. & Ostrer, H. Sry is a transcriptional activator. Mol. Endocrinol. 8, 1182–1192 (1994).

    CAS  PubMed  Google Scholar 

  10. Gubbay, J. et al. Inverted repeat structure of the Sry locus in mice. Proc. Natl Acad. Sci. USA 89, 7953–7957 (1992).

    Article  CAS  Google Scholar 

  11. Miller, K.E., Lundrigan, B.L. & Tucker, P.K. Length variations of CAG repeats in Sry across populations of Mus domesticus. Mamm. Genome 6, 206–208 (1995).

    Article  CAS  Google Scholar 

  12. Albrecht, K.H. & Eicher, E.M. DNA sequence analysis of Sry alleles (Subgenus Mus) implicates misregulation as the cause of C57BL/6J-YPOS sex reversal and defines the SRY functional unit. Genetics 147, 1267–1277 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Koopman, P., Münsterberg, A., Capel, B., Vivian, N. & Lovell-Badge, R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450–452 (1990).

    Article  CAS  Google Scholar 

  14. Pontiggia, A. et al. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J. 13, 6115–6124 (1994).

    Article  CAS  Google Scholar 

  15. Kamachi, Y., Cheah, K.S. & Kondoh, H. Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19, 107–120 (1999).

    Article  CAS  Google Scholar 

  16. Südbeck, P. & Scherer, G. Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J. Biol. Chem. 272, 27848–27852 (1997).

    Article  Google Scholar 

  17. Coward, P. et al. Polymorphism of a CAG repeat within Sry correlates with B6.YDom sex reversal. Nature Genet. 6, 245–250 (1994).

    Article  CAS  Google Scholar 

  18. Eicher, E.M., Shown, E.P. & Washburn, L.L. Sex reversal in C57BL/6J-YPOS mice corrected by an Sry transgene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 350, 263–269 (1995).

    Article  CAS  Google Scholar 

  19. Reddy, P.S. & Housman, D.E. The complex pathology of trinucleotide repeats. Curr. Opin. Cell Biol. 9, 364–372 (1997).

    Article  CAS  Google Scholar 

  20. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  Google Scholar 

  21. Tanaka, M., Clouston, W.M. & Herr, W. The Oct-2 glutamine-rich and proline-rich activation domains can synergize with each other or duplicates of themselves to activate transcription. Mol. Cell. Biol. 14, 6046–6055 (1994).

    Article  CAS  Google Scholar 

  22. Lau, Y.-F.C. & Zhang, J. Sry interactive proteins: implications for the mechanisms of sex determination. Cytogenet. Cell. Genet. 80, 128–132 (1998).

    Article  CAS  Google Scholar 

  23. Latchman, D.S. Eukaryotic Transcription Factors (Academic Press, London, 1998).

    Google Scholar 

  24. Krawczak, M. & Cooper, D.N. The Human Gene Mutation Database. Trends Genet. 13, 121–122 (1997).

    Article  CAS  Google Scholar 

  25. Poulat, F. et al. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J. Biol. Chem. 14, 7167–7172 (1997).

    Article  Google Scholar 

  26. Mann, J.R. & McMahon, A.P. Factors influencing frequency production of transgenic mice. in Guide to Techniques in Mouse Development (eds Wassarman, P.M. & DePamphilis, M.L.) 771–781 (Academic Press, San Diego, 1993).

    Chapter  Google Scholar 

  27. Burgoyne, P.S., Tam, P.P.L. & Evans, E.P. Retarded development of XO conceptuses during early pregnancy in the mouse. J. Reprod. Fertil. 68, 387–393 (1983).

    Article  CAS  Google Scholar 

  28. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  29. Jeske, Y.W.A., Bowles, J., Greenfield, A. & Koopman, P. Expression of a linear Sry transcript in the mouse genital ridge. Nature Genet. 10, 480–482 (1995).

    Article  CAS  Google Scholar 

  30. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts' prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Lovell-Badge for providing plasmid L741 and for helpful discussions; C. Nagamine for comments on the manuscript; anonymous referees for constructive suggestions; R. Behringer, R. Krumlauf, A. Greenfield, S. Wheatley, Y. Kanai, M. Azuma-Kanai, D. Pennisi and M. Hargrave for advice and encouragement; and L. Kelly and A. Hardacre for supply of mice. This work was supported by an NHMRC Postdoctoral Research Fellowship to J. Bowles and research grants from the NHMRC and the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koopman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowles, J., Cooper, L., Berkman, J. et al. Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nat Genet 22, 405–408 (1999). https://doi.org/10.1038/11981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing