Article | Published:

X–linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein

Nature Genetics volume 13, pages 409416 (1996) | Download Citation

Subjects

Abstract

Ectodermal dysplasias comprise over 150 syndromes of unknown pathogenesis. X–linked anhidrotic ectodermal dysplasia (EDA) is characterized by abnormal hair, teeth and sweat glands. We now describe the positional cloning of the gene mutated in EDA. Two exons, separated by a 200–kilobase intron, encode a predicted 135–residue transmembrane protein. The gene is disrupted in six patients with X;autosome translocations or submicroscopic deletions; nine patients had point mutations. The gene is expressed in keratinocytes, hair follicles, and sweat glands, and in other adult and fetal tissues. The predicted EDA protein may belong to a novel class with a role in epithelial–mesenchymal signalling.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The variation of animals and plants under domestication. 2nd edn. Vol II, 319. (John Murray, London, 1875).

  2. 2.

    , Mendelian in heritance in Man. 11th edn. (Johns Hopkins University Press, Baltimore, 1994).

  3. 3.

    & Ectodermal dysplasias: a clinical and genetic study. (Alan R. Liss, New York, 1984).

  4. 4.

    & Ectodermal dysplasias: a clinical classification and a causal review. Am. J. Med. Genet. 53, 153–162 (1994).

  5. 5.

    , & Clinical spectrum of anhidrotic ectodermal dysplasia. Arch. Derm. 102, 134–143 (1970).

  6. 6.

    , & Gene effect in carriers of anhidrotic ectodermal dysplasia. J. Med. Genet. 3, 169–176 (1966).

  7. 7.

    et al. Close linkage between X-linked ectodermal dysplasia and a cloned DNA sequence detecting a two allele restriction fragment lenght polymorphism in the region Xp11-q12. Hum. Genet. 74, 284–287

  8. 8.

    , & Gene localization of X-linked hypohidrotic ectodermal dysplasia (C-S-T syndrome). Hum. Genet. 74, 172–173 (1986).

  9. 9.

    et al. X-linked hypohidrotic ectodermal dysplasia: DNA probe linkage analysis and gene localization. Hum. Genet. 75, 378–380 (1987).

  10. 10.

    et al. Genetic mapping of anhidrotic ectodermal dysplasia: DXS159, a closely linked proximal marker. Hum. Genet. 80, 177–180 (1988).

  11. 11.

    et al. X-linked hypohidrotic ectodermal dysplasia: localization within the region Xq11-21.1 by linkage analysis and implications for carrier detection and prenatal diagnostics. Am. J. Hum. Genet. 43, 75–85 (1988).

  12. 12.

    et al. High resolution mapping of the X-linked hypohidrotic ectodermal dysplasia locus. Am. J. Hum. Genet. 51, 1036–1046 (1992).

  13. 13.

    et al. X-linked hypohidrotic ectodermal dysplasia and t(X;12) in a female. Clin. Genet. 35, 462–466 (1989).

  14. 14.

    et al. X-linked anhidrotic ectodermal dysplasia and de novo t(X;1) in afemale. Hum. Genet. 87, 338–340 (1991).

  15. 15.

    Hypohidrotic (anhidrotic) ectodermal dysplasia: Molecular genetic research and its clinical applications. Semin. Dermatol. 12, 241–246 (1993).

  16. 16.

    et al. Characterisation of molecular DNA rearrangements within the Xq12-q13.1 region, in three patients with X-linked hypohidrotic ectodermal dysplasia (EDA). Hum. Mol. Genet. 10, 1679–1685 (1993).

  17. 17.

    et al. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes. Genomics 16, 305–310 (1993).

  18. 18.

    et al. Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed. Am. J. Hum. Genet. 58, 126–132 (1996).

  19. 19.

    et al. Detection of a molecular deletion at the DXS732 locus in a patient with X-linked hypohidrotic ectodermal dysplasia (EDA), with identification of a unique junctional fragment. Am. J. Hum. Genet. 52, 78–84 (1993).

  20. 20.

    An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1987).

  21. 21.

    The structure and insertion of integral proteins in membranes. Annu. Rev. Cell. Biol. 6, 247–296 (1990).

  22. 22.

    , , & Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

  23. 23.

    & Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Progr. Nucl. Acid Res. Mol. Biol. 50, 225–262 (1995).

  24. 24.

    et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

  25. 25.

    , , , & PA Splicing of messenger RNA pecursors. Annu. Rev. Biochem. 55, 1119–1150 (1986).

  26. 26.

    , , , & mRNA-deficient beta-thalassemia results from a single nucleotide deletion. Nucl. Acids Res. 10, 5421–5427 (1982).

  27. 27.

    & Nonsense mutation in the human beta-globin gene affect mRNA metabolism. Proc. Natl. Acad. Sci. USA 85, 2056–2060 (1988).

  28. 28.

    & Organization and expression of hair follicle genes. J. Invest. Dermatol. 101, 50S–55S (1993).

  29. 29.

    , , & LEF-1.A gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev. 5, 880–694 (1991).

  30. 30.

    , & The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185–195 (1992).

  31. 31.

    , , & Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 9, 570–583 (1995).

  32. 32.

    et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1 deficient mice. Genes Dev. 8, 2691–2703 (1994).

  33. 33.

    A totally sex-linked gene in the house mouse. Nature 169, 664–665 (1952).

  34. 34.

    Anhidrosis and absence of sweat glands in mice hemizygous for the Tabby gene: supportive evidence for the hypothesis of homology between Tabby and human anhidrotic (hypohidrotic) ectodermal dysplasia (Christ-Siemens-Touraine syndrome). J. Invest Dermatol. 87, 720–722 (1986).

  35. 35.

    , , & Molecular genetic analysis of the Ta25H deletion: evidence for additional deleted loci. Mammal. Genome 1, 152–157 (1991).

  36. 36.

    , & Induction of sweat glands by epidermal growth factor in murine X-linked anhidrotic ectodermal dysplasia. Nature 345, 542–544 (1990).

  37. 37.

    et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376, 337–341 (1995).

  38. 38.

    The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).

  39. 39.

    & Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

  40. 40.

    Genetics computer Group. Program Manual for the Wisconsin Package, Version 8. (Madison, Wisconsin, 1994).

  41. 41.

    et al. Detection of de novo mutations and analysis of their origin in families with X-linked hypohidrotic ectodermal dysplasia. J. Med. Genet. 31, 287–292 (1994).

  42. 42.

    et al. Small frame shift deletions within the COL4A5 gene in juvenile-onset Alport syndrome. Hum. Genet. 92, 417–420 (1993).

  43. 43.

    & Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 163, 156–159 (1987).

  44. 44.

    , & Molecular cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

  45. 45.

    et al. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am. J. Pathol. 135, 1073–1088 (1989).

  46. 46.

    et al. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J. Clin. Invest. 92, 2858–2866 (1993).

Download references

Author information

Author notes

    • Juha Kere
    •  & Anand K. Srivastava

    J.K. & A.K.S. contributed equally to this work

Affiliations

  1. Department of Medical Genetics, Haartman Institute, PO Box21, 00014 University of Helsinki, Finland

    • Juha Kere
    • , Outi Montonen
    • , Sini Ezer
    • , Ulpu Saarialho-Kere
    •  & Albert de la Chapelle
  2. Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St. Louis, Missouri 63110, USA

    • Anand K. Srivastava
    •  & David Schlessinger
  3. Present address: J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina 29646, USA

    • Anand K. Srivastava
  4. Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97201, USA

    • Jonathan Zonana
    • , Betsy Ferguson
    •  & Felix Munoz
  5. Institute of Medical Genetics, University of Wales College of Medicine, Cardiff CF4 4XN, UK

    • Nick Thomas
    • , Delyth Morgan
    •  & Angus Clarke
  6. Advanced Center for Genetic Technology, Applied Biosystems Division, Foster City, California 94404, USA

    • Primo Baybayan
    •  & Ellson Y. Chen
  7. Department of Dermatology, Helsinki University Central Hospital, 00250 Helsinki, Finland

    • Ulpu Saarialho-Kere

Authors

  1. Search for Juha Kere in:

  2. Search for Anand K. Srivastava in:

  3. Search for Outi Montonen in:

  4. Search for Jonathan Zonana in:

  5. Search for Nick Thomas in:

  6. Search for Betsy Ferguson in:

  7. Search for Felix Munoz in:

  8. Search for Delyth Morgan in:

  9. Search for Angus Clarke in:

  10. Search for Primo Baybayan in:

  11. Search for Ellson Y. Chen in:

  12. Search for Sini Ezer in:

  13. Search for Ulpu Saarialho-Kere in:

  14. Search for Albert de la Chapelle in:

  15. Search for David Schlessinger in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng0895-409

Further reading