Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct genetic loci control development of benign and malignant skin tumours in mice

Abstract

Genetic susceptibility to chemically induced skin cancer in mice is controlled by multiple unlinked genetic loci. Mus spretus mice have dominant resistance genes which confer resistance to interspecific F1 hybrids with susceptible Mus musculus strains. We have mapped three major resistance loci using a combination of Mapmaker/QTL analysis and multiple regression analysis to mouse chromosomes 5 and 7. At least two independent loci on chromosome 7 exert their effects primarily during benign tumour development and have very little influence on tumour progression. On the other hand, probably a single locus on chromosome 5 affects both early and late stages of malignancy. The results indicate that benign and malignant tumours are largely under independent genetic control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Demant, P. Genetic resolution of susceptibility to cancer—new perspectives. Sem. Cancer Biol. 3, 159–166 (1992).

    CAS  Google Scholar 

  2. Ponder, B.A. Inherited predisposition to cancer. Trends Genet. 6, 213–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Knudson, A.G. Antioncogenes and human cancer. Proc. natn. Acad. Sci.U.S.A 90, 10914–10921 (1993).

    Article  CAS  Google Scholar 

  4. Peto, J. Predisposition to Cancer. in Cancer Incidence in Defined Populations (Banbury Report 4) (eds Caims, J., Lyon, J.L. & Skolnick, M.) 203–213 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1980).

    Google Scholar 

  5. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2047 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Mock, B.A., Krall, M.M. & Dosik, J.K. Genetic mapping of tumor susceptibility genes involved in mouse plasmacytomagenesis. Proc. natn. Acad. Sci. U.S.A. 99, 9499–9503 (1993).

    Article  Google Scholar 

  7. Manenti, G. et al. Multiple loci affect genetic predisposition to hepatocarcinogenesis in mice. Genomics 23, 118–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Gariboldi, M. et al. Chromosome mapping of murine susceptibility loci to liver carcinogenesis. Cancer Res. 53, 209–211 (1994).

    Google Scholar 

  9. Bangrazi, C. et al. Genetics of chemical carcinogenesis. 1. Bidirectional selective breeding of susceptible and resistant lines of mice to two-stage skin carcinogenesis. Carcinogenesis 11, 1711–1719 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Gimenez-Conti, I.B. et al. Dissociation of sensitivities to tumor promotion and progression in outbred and inbred SENCAR mice. Cancer Res. 52, 3432–3435 (1992).

    CAS  PubMed  Google Scholar 

  11. Drinkwater, N. & Ginsler, J.J. Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice. Carcinogenesis 7, 1701–1707 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Groot, P.C. et al. The recombinant congenic strains for analysis of multigenic traits: genetic composition. Res. Comm. 2826–2835 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Love, J.M., Knight, A.M., McAleer, M.A. & Todd, J.A. Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucl. Acids Res. 18, 4123–4130 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cornall, R.J., Aitman, T.J., Hearne, C.M. & Todd, J.A. The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10, 874–881 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Todd, J.A. et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351, 542–547 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecif ic crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghosh, S. et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nature Genet. 4, 404–409 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Burns, P.A. et al. Loss of heterozygosity and mutational alterations of the p53 gene in skin tumors of interspecific hybrid mice. Oncogene 6, 2363–2369 (1991).

    CAS  PubMed  Google Scholar 

  19. Hennings, H., Shores, R., Mitchell, P., Spangler, E.F. & Yuspa, S.H. Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis 6, 1607–1610 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Lander, E. et al. MAPMAKER: An interactive computer package for conducting primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Paterson, A. et al. Resolution of quantitative traits into mendelian factors using a complete RFLP linkage map. Nature 335, 721–726 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, Z. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. natn. Acad. Sci. U.S.A. 90, 10972–10973 (1993).

    Article  CAS  Google Scholar 

  23. Bonney, G.E. Regressive logistic models for familial disease and other binary traits. Biometrics 42, 611–625 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Naito, M., Chenicek, K.J., Naito, Y. & DiGiovanni, J. Susceptibility to phorbol ester skin tumor promotion in (C57BL/6 × DBA/2) F1 mice is inherited as an incomplete dominant trait: evidence for multi-locus involvement. Cancer Research 15, 639–645 (1991).

    Google Scholar 

  25. Hearne, C.M. et al. Additional microsatellite markers for mouse genome mapping. Mammal. Gen. 1, 273–282 (1991).

    Article  CAS  Google Scholar 

  26. Yuspa, S.H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis. Cancer Res. 54, 1178–1189 (1994).

    CAS  PubMed  Google Scholar 

  27. Fischer, S.M. et al. Characterization of an inbred strain of the SENCAR mouse that is highly sensitive to phorbol esters. Carcinogenesis 8, 421–424 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Kemp, C.J., Burns, P.A., Brown, K., Nagase, H. & Balmain, A. Transgenic approaches to the analysis of ras and p53 function in multistage carcinogenesis. in Cold Spring Harbour Symposia on Quantitative Biology. Molecular Genetics of Cancer (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, in the press).

    Article  CAS  PubMed  Google Scholar 

  29. Balmain, A. et al. Functional loss of tumour suppressor genes in multistage chemical c\arcinogenesis. in Multistage Carcinogenesis (eds Harris, C.C. et al.) 97–108 (Japan Sci.Soc.Press, Tokyo/CRC Press, Boca Raton, 1992).

    Google Scholar 

  30. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Aldaz, C.M., Trono, D., Larcher, F., Slaga, T.J. & Conti, C.J. Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Mol. Carcinog. 2, 22–26 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Kemp, C.J., Fee, F. & Balmain, A. Allelotype analysis of mouse skin tumours using polymorphic microsatellites: sequencial genetic alterations on chromosomes 6, 7 and 11. Cancer Res. 53, 6022–6027 (1993).

    CAS  PubMed  Google Scholar 

  33. Bremner, R. & Balmain, A. Genetic changes in skin tumour progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61, 407–417 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Bianchi, A.B., Aldaz, C.M. & Conti, C.J. Non-random duplication of the chromosome bearing a mutated Ha-ras-1 allele in mouse skin tumours. Proc. natn. Acad. Sci. U.S.A. 87, 6902–6906 (1990).

    Article  CAS  Google Scholar 

  35. Bremner, R., Kemp, C.J. & Balmain, A. Induction of different genetic changes by different classes of chemical carcinogens during progression of mouse skin tumours. Molec. Carcin. 11, 90–97 (1994).

    Article  CAS  Google Scholar 

  36. Gariboldi, M. et al. A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nature Genet. 3, 132 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Rinchik, E.M. et al. Mouse chromosome 7. Mamm. Gen. 3, s104–s120 (1992).

    Article  CAS  Google Scholar 

  38. Krontiris, T.G., Devlin, B., Karp, D.D., Robert, N.J. & Risch, N. An association between the risk of cancer and mutations in the Hras1 minisatelllte locus. New Engl. J. Med. 329, 517–523 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Ryan, J., Barker, P.E., Nesbitt, M.N. & Ruddle, F.H. KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J. natn. Cancer Inst. 79, 1351–1356 (1987).

    CAS  Google Scholar 

  40. Chen, B., Johanson, L., Wiest, J.S., Anderson, M.W. & You, M. The second intron of the K-ras gene contains regulatory elements associated with mouse lung tumor susceptibility. Proc. natn. Acad. Sci. U.S.A. 91, 1589–1593 (1994).

    Article  CAS  Google Scholar 

  41. Alarid, E.T. et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc. natn. Acad. Sci. U.S.A. 91, 1074–1078 (1994).

    Article  CAS  Google Scholar 

  42. Carter, B.S., Ewing, C.M. & Ward, S.W. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc. natn. Acad. Sci. U.S.A. 87, 8771–8775 (1990).

    Article  Google Scholar 

  43. Vassar, R., Hutton, M.E. & Fuchs, E. Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis. Molec. Cell Biol. 12, 4643–4653 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng, C. et al. Epidermal growth factor receptor ligands regulate keratin 8 expression in keratinocytes, and transforming growth factor alpha mediates the induction of keratin 8 by the v-rasHa oncogene. Cell Growth Diff. 4, 317–327 (1993).

    CAS  PubMed  Google Scholar 

  45. Lee, C.C., Kozak, C.A. & Yamada, K.M. Structure, genetic mapping, and expression of the mouse Hgf/scatterfactor gene. Cell Adhes. Communication 1, 101–111 (1993).

    Article  CAS  Google Scholar 

  46. Weidner, K.M., Behrens, J., Vanderkerckhove, J. & Birchmeier, W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111, 2097–2108 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagase, H., Bryson, S., Cordell, H. et al. Distinct genetic loci control development of benign and malignant skin tumours in mice. Nat Genet 10, 424–429 (1995). https://doi.org/10.1038/ng0895-424

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing