Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map

Abstract

Using our data set of 3,143 single pass sequences from human brain cDNA libraries, we have developed a strategy in which gene–based sequence–tagged–sites (STSs), derived from 3′untranslated regions of human cDNAs, are rapidly assigned to megabase–insert yeast artificial chromosomes and somatic cell hybrids to generate regional gene mapping data. Employing this approach, we have mapped 318 cDNAs, representing 308 human genes. Ninety–two of these mapped to regions implicated in human genetic diseases, identifying them as candidate genes. Extension of this strategy has the potential to result in virtually every human gene having, at its 3′ end, its own associated STS, with each STS in turn specifying both a corresponding genomic clone and a specific regional location in the genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wilcox, A.S., Khan, A.S., Hopkins, J.A. & Sikela, J.M. Use of 3′untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs: implications for an expression map of the genome. Nucl. Acids Res. 19, 1837–1843 (1991).

    Article  CAS  Google Scholar 

  2. Olsen, M., Hood, L., Cantor, C. & Botstein, D. A common language for physical mapping of the human genome. Science 245, 1434–1435 (1989).

    Article  Google Scholar 

  3. Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  Google Scholar 

  4. Adams, M.D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  Google Scholar 

  5. Adams, M.D., Kerlavage, A.R., Fields, C. & Venter, J.C. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nature Genet. 4, 256 (1993).

    Article  CAS  Google Scholar 

  6. Adams, M., Soares, B., Kerlavage, A., Fields, C. & Venter, J.C. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genet. 4, 373–380 (1993).

    Article  CAS  Google Scholar 

  7. Khan, A.S. et al. Single pass sequencing and physical and genetic mapping of human brain cDNAs. Nature Genet. 2, 180–185 (1992).

    Article  CAS  Google Scholar 

  8. McCombie, W.R. et al. Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nature Genet. 1, 124–131 (1992).

    Article  CAS  Google Scholar 

  9. Okubo, K. et al. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genet. 2, 173–179 (1992).

    Article  CAS  Google Scholar 

  10. Polymeropoulos, M.H. et al. Chromosomal assignment of 46 brain cDNAs. Genomics 12, 492–496 (1992).

    Article  CAS  Google Scholar 

  11. Polymeropoulos, M.H. et al. Chromosomal distribution of 320 genes from a brain cDNA library. Nature Genet. 4, 381–386 (1993).

    Article  CAS  Google Scholar 

  12. Sikela, J.M. & Auffray, C. Finding new genes faster than ever. Nature Genet. 3, 189–191 (1993).

    Article  CAS  Google Scholar 

  13. Waterston, R. et al. A survey of expressed sequence tags from C. elegans. Nature Genet. 1, 114–123 (1992).

    Article  CAS  Google Scholar 

  14. Bellanné-Chantelot, C. et al. Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70, 1059–1068 (1992).

    Article  Google Scholar 

  15. Cohen, D., Chumakov, I. & Weissenbach, J. A first generation map of the human genome. Nature 366, 698–701 (1993).

    Article  CAS  Google Scholar 

  16. OMIM(™)[database online]. Johns Hopkins University; Baltimore, MD. (searched August, 1994-December, 1994).

  17. Cox, D.R., Burmeister, M., Price, E.R., Kim, S. & Myers, R.M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  Google Scholar 

  18. Collins, F.S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 (1995).

    Article  CAS  Google Scholar 

  19. Soares, M.B. et al. Construction and characterization of a normalized cDNA library. Proc. natn. Acad. Sci. U.S.A. 91, 9228–9232 (1994).

    Article  CAS  Google Scholar 

  20. Boguski, M. dbEST: a database of expressed sequence tags. Nature Genet. 4, 332–333 (1993).

    Article  CAS  Google Scholar 

  21. Benson, D., Lipman, D.O. & Ostell, J. Genebank Nucl. Acids Res. 21, 2963–2965 (1993).

    Article  CAS  Google Scholar 

  22. Lincoln, S.E., Daly, M.J. & Lander, E.S. PRIMER: a computer program for automatically selecting PCR Primers, Version 0.5, The Whitehead Institute for Biomedical Research(1991).

  23. Goold, R.D. et al. The development of sequence-tagged sites for human chromosome 4 [see comments]. Hum. molec. Genet. 2, 1271–1288 (1993).

    Article  CAS  Google Scholar 

  24. Reid, T., Baldini, A., Rand, T.C. & Ward, D.C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. natn. Acad. Sci. U.S.A. 89, 1388–1392 (1992).

    Article  Google Scholar 

  25. Weber, J.L. et al. Evidence for human meiotic crossover interference obtained through construction of a short tandem repeat polymorphism linkage map of chromosome 19. Am. J. hum. Genet 53, 1079–1095 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, R., Stevens, T., Walter, N. et al. Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map. Nat Genet 10, 415–423 (1995). https://doi.org/10.1038/ng0895-415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing