Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Wilms tumour gene WT1 is expressed in murine mesoderm–derived tissues and mutated in a human mesothelioma

Abstract

The tumour suppressor gene WT1 encodes a transcription factor expressed in tissues of the genito–urinary system. Inactivation of this gene is associated with the development of Wilms tumour a pediatric kidney cancer. We show that WT1 is also expressed at high levels in many supportive structures of mesodermal origin in the mouse. We also describe a case of adult human mesothelioma, a tumour derived from the peritoneal lining, that contains a homozygous point mutation within WT1. This mutation, within the putative transactivation domain, converts the protein from a transcriptional repressor of its target sequence to a transcriptional activator. The role of WT1 in normal development thus extends to diverse structures derived from embryonic mesoderm and disruption of WT1 function contributes to the onset of adult, as well as pediatric, tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Filippo Spreafico, Conrad V. Fernandez, … Kathy Pritchard-Jones

References

  1. Haber, D. & Housman, D. The genetics of Wilms' tumour. Adv. cancer Res. 59, 41–68 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Call, K. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumour locus. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Haber, D. et al. Alternative splicing and genomic structure of the Wilms tumour gene WT1. Proc. natn. Acad. Sci. U.S.A. 88, 9618–9622 (1991).

    Article  CAS  Google Scholar 

  5. Rauscher, F. et al. Binding of the Wilms' tumour locus zinc finger protein to the EGR-1 consensus sequence. Science 250, 1259–1262 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Knudson, A. & Strong, L. Mutation and cancer: a model for Wilms tumour of the kidney. J. natn. Cancer Inst. 48, 313–324 (1972).

    Google Scholar 

  7. Huff, V. et al. Evidence for WT1 as a Wilms tumour (WT) gene: intragenic germinal deletion in bilateral WT. Am. J. hum. Genet. 48, 997–1003 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pelletier, J. et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms' tumour. Nature 353, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Pelletier, J. et al. Germline mutations in the Wilms' tumour suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Haber, D. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumour. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Cowell, J. et al. Structural rearrangements of the WT1 gene in Wilms' tumour cells. Oncogene 6, 595–599 (1991).

    CAS  PubMed  Google Scholar 

  12. Ton, C. et al. Smallest region of overlap in Wilms' tumour deletions uniquely implicates an 11p13 zinc finger gene as the disease locus. Genomics 10, 293–297 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Little, M. et al. Zinc finger point mutations within the WT1 gene in Wilms tumour patients. Proc. natn. Acad. Sci. U.S.A. 89, 4791–4795 (1992).

    Article  CAS  Google Scholar 

  14. Pritchard-Jones, K. et al. The candidate Wilms' tumour gene is involved in genitourinary development. Nature 346, 194–197 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Buckler, A., Pelletier, J., Haber, D., Glaser, T. & Housman, D., Isolation, characterization, and expression of the murine Wilms' tumour gene (WT1) during kidney evelopment. Molec. cell. Biol. 11, 1707–1712 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pelletier, J. et al. Expression of the Wilms' tumour gene WT1 in the murine urogenital system. Genes Dev. 5, 1345–1356 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Bloom, W. & Fawcett, D.W. Epithelium, in A text book of histology (Saunders, Philadelphia) 83–98 (1975).

    Google Scholar 

  18. Tubo, R. & Rheinwald, J. Normal human mesothelial cells and fibroblasts transfected with the EJras oncogene become EGF-independent, but are not malignantly transformed. Oncogene Res. 1, 407–421 (1987).

    CAS  PubMed  Google Scholar 

  19. Behbehani, A. et al. Studies of a human mesothelioma. Hum. Pathol. 13, 862–866 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Connell, N.D. & Rheinwald, J.G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34, 245–253 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Miwa, H., Beran, M. & Saunders, G.F. Expression of the Wilms tumour gene (WT1) in human leukemias. Leukemia 6, 405–409 (1992).

    CAS  PubMed  Google Scholar 

  22. Orita, N., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  23. Salazar, H., Kanbour, A. & Burgess, F. Ultrastructure and observations on the histogenesis of mesotheliomas “adenomatoid tumours” of the female genital tract. Cancer 29, 141152 (1972).

    Article  Google Scholar 

  24. Madden, S. et al. Transcriptional repression mediated by the WT1 Wilms tumour gene product. Science 253, 1550–1553 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Drummond, I. et al. Repression of the insulin-like growth factor II gene by the Wilms tumour suppressor WT1. Science 257, 674–678 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Maheswaran, S. et al. Physical association and functional interaction between the Wilms tumour (WT1) and p53 gene products. Proc. natn. Acad. Sci. U.S.A. (in the press).

  27. Demetri, G., Zenzie, B., Rheinwald, R. & Griffin, J. Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cell lines in vitro. Blood 74, 940–946 (1989).

    CAS  PubMed  Google Scholar 

  28. Gibas, Z. et al. Chromosomal changes in malignant mesothelioma. Cancer Genet. Cytogenet. 20, 191–201 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Tiainen, M. et al. Chromosome abnormalities and their correlation with asbestos exposure and survival in patients with mesothelioma. Br. J. Cancer 60, 618–626 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flejter, W.L. et al. Recurring loss involving chromosomes 1,3 and 22 in malignant mesothelioma: possible sites of tumour suppressor genes. Genes Chrom. Cancer 1, 148–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Hagemeijer, A. et al. Cytogenetic analysis of malignant mesothelioma. Cancer Genet. Cytogenet. 47, 1–28 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Fletcher, J. et al. Consistent chromosome aberrations and genetic stability in malignant mesotheliomas: diagnostic relevance. Lab. Invest. 64, 114A (1991).

    Google Scholar 

  33. Tammilehto, L. et al. Malignant mesothelioma: clinical characteristics, asbestos mineralogy and chromosomal abnormalities of 41 patients. Eur. J. Cancer 28, 1373–1379 (1992).

    Article  Google Scholar 

  34. Glaser, T., Lane, J. & Housman, D. A mouse model of the Aniridia-Wilms' tumour deletion syndrome. Science 250, 823–827 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Schalling, M. et al. Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc. natn. Acad. Sci. U.S.A. 87, 8427–8431 (1990).

    Article  CAS  Google Scholar 

  36. Rosa, F. et al. The B2-microglobulin mRNA in human Daudi cells has a mutated innitiation codon but is still inducible by interferon. EMBO J. 2, 239–242 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haber, D., Timmers, H., Pelletier, J., Sharp, P. & Housman, D. A dominant mutation in the Wilms tumour gene WT1 cooperates with the viral oncogene E1A in transformation of primary kidney cells. Proc. natn. Acad. Sci. U.S.A. 89, 6010–6014 (1992).

    Article  CAS  Google Scholar 

  38. Gorman, C., Moffat, L. & Howard, B. Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Molec. cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wysock, L.J. & Sato, V.L. “Panning” for lymphocytes: a method for cell selection. Proc. natn Acad. Sci. U.S.A. 75, 2844–2848 (1978).

    Article  Google Scholar 

  40. Auffray, C. & Rougeon, F. Purification of moose immunoglobin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Austin, M.B., Fechner, R.E. & Roggli, V.L. Pleural malignant mesothelioma following Wilms' tumor. Am. J. din. Path. 86, 227–230 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Schalling, M., Bernard, A. et al. The Wilms tumour gene WT1 is expressed in murine mesoderm–derived tissues and mutated in a human mesothelioma. Nat Genet 4, 415–420 (1993). https://doi.org/10.1038/ng0893-415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0893-415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing