The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs

In model organisms, chemical mutagenesis provides a powerful alternative to natural, polygenic variation (for example, quantitative trait loci (QTLs)) for identifying functional pathways and complex disease genes. Despite recent progress in QTLs, we expect that mutagenesis will ultimately prove more effective because the prospects of gene identification are high and every gene affecting a trait is potentially a target.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lander, E.S. & Botstein, D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

  2. 2

    Dietrich, W.F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996).

  3. 3

    Wang, D.G. et al. Large scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

  4. 4

    Haley, C.S. & Knott, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324 (1992).

  5. 5

    Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

  6. 6

    Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994).

  7. 7

    Lander, E.S. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

  8. 8

    Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18, 19–24 (1998).

  9. 9

    Paterson, A.H. Molecular Dissection of Complex Traits (CRC Press, Boca Raton, 1998).

  10. 10

    Battey, J., Jordan, E., Cox, D. & Dove, W. An action plan for mouse genomics. Nature Genet. 21, 73–75 (1999).

  11. 11

    Justice, M.J. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

  12. 12

    Cormier, R.T. et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nature Genet. 17, 88–91 (1997).

  13. 13

    Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA 97, 4718–4723 (2000).

  14. 14

    Demant, P. & Hart, A.A. Recombinant congenic strains—a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24, 416–422 (1986).

  15. 15

    Nadeau, J.H., Singer, J.B., Matin, A. & Lander, E.S. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 24, 221–225 (2000).

  16. 16

    Matin, A., Collin, G.B., Asada, Y., Varnum, D. & Nadeau, J.H. Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nature Genet. 23, 237–240 (1999).

  17. 17

    Legare, M.E., Bartlett, F.S. II & Frankel, W.N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000).

  18. 18

    Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nature Genet. 21, 305–308 (1999).

  19. 19

    Darvasi, A. & Soller, M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 1199–1207 (1995).

  20. 20

    Malo, D. et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23, 51–61 (1994).

  21. 21

    Manenti, G. et al. Linkage disequilibrium and physical mapping of Pas1 in mice. Genome Res. 9, 639–646 (1999).

  22. 22

    You, Y. et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nature Genet. 15, 285–288 (1997).

  23. 23

    Schimenti, J. & Bucan, M. Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Res. 8, 698–710 (1998).

  24. 24

    Symula, D.J. et al. Functional screening of an asthma QTL in YAC transgenic mice. Nature Genet. 23, 241–244 (1999).

  25. 25

    Marker, P.C., Seung, K., Bland, A.E., Russell, L.B. & Kingsley, D.M. Spectrum of Bmp5 mutations from germline mutagenesis experiments. Genetics 145, 435–443 (1997).

  26. 26

    Chen, Y. et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Mamm. Genome 11, 500–506 (2000).

  27. 27

    Munroe, R.J. et al. Mouse mutants from chemically mutagenized embryonic stem cells. Mamm. Genome 11, 507–510 (2000).

  28. 28

    Nolan, P.M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

  29. 29

    Hrabe de Angelis, M. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

  30. 30

    Rinchik, E.M. Chemical mutagenesis and fine-structure functional analysis of the mouse genome. Trends Genet. 7, 15–21 (1991).

  31. 31

    Davis, A.P. & Justice, M.J. Mouse alleles: if you've seen one, you haven't seen them all. Trends Genet. 14, 438–441 (1998).

  32. 32

    Sztein, J.M., Farley, J.S., Young, A.F. & Mobraaten, L.E. Motility of cryopreserved mouse spermatozoa affected by temperature of collection and rate of thawing. Cryobiology 35, 46–52 (1997).

  33. 33

    Sztein, J., Sweet, H., Farley, J. & Mobraaten, L. Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol. Reprod. 58, 1071–1074 (1998).

  34. 34

    Glenister, P.H. & Thornton, C.E. Cryoconservation—archiving for the future. Mamm. Genome 11, 565–571 (2000).

Download references

Acknowledgements

We thank G. Churchill, J. Naggert and J. Schimenti for comments on this manuscript. This work was supported by NIH grants HL58982, CA75056 and RR12305 to J.H.N.; NS31348, DC03611, NS40246 to W.N.F.; by a Cancer Center Support grant CA34196 to The Jackson Laboratory; by a grant from the Keck Foundation to the Department of Genetics, Case Western Reserve University; and by a Howard Hughes Medical Institute grant to the Case Western Reserve University School of Medicine.

Author information

Correspondence to Joseph H. Nadeau or Wayne N. Frankel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nadeau, J., Frankel, W. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 25, 381–384 (2000). https://doi.org/10.1038/78051

Download citation

Further reading