Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the gene encoding 3β- hydroxysteroid-Δ87- isomerase cause X-linked dominant Conradi-Hünermann syndrome

Abstract

X-linked dominant Conradi-Hünermann syndrome (CDPX2; MIM 302960) is one of a group of disorders with aberrant punctate calcification in cartilage, or chondrodysplasia punctata (CDP). This is most prominent around the vertebral column, pelvis and long bones in CPDX2. Additionally, CDPX2 patients may have asymmetric rhizomesomelia, sectorial cataracts, patchy alopecia, ichthyosis and atrophoderma1. The phenotype in CDPX2 females ranges from stillborn to mildly affected individuals identified in adulthood. CDPX2 is presumed lethal in males, although a few affected males have been reported2,3. We found increased 8(9)-cholestenol and 8-dehydrocholesterol in tissue samples from seven female probands with CDPX2 ( ref. 4). This pattern of accumulated cholesterol intermediates suggested a deficiency of 3β-hydroxysteroid-Δ87-isomerase (sterol-Δ8-isomerase), which catalyses an intermediate step in the conversion of lanosterol to cholesterol4. A candidate gene encoding a sterol-Δ8-isomerase ( EBP) has been identified and mapped to Xp11.22–p11.23 (Refs 5,6). Using SSCP analysis and sequencing of genomic DNA, we found EBP mutations in all probands. We confirmed the functional significance of two missense alleles by expressing them in a sterol-Δ8-isomerase-deficient yeast strain. Our results indicate that defects in sterol-Δ8-isomerase cause CDPX2 and suggest a role for sterols in bone development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sterol metabolism in CPDX2.
Figure 2: Heterozygous mutations in EBP in all seven probands.
Figure 3: GC flame ionization profile of sterols extracted from the erg2-3 strain transformed with vector alone (a), wild-type human EBP (b), human EBP containing the E80K mutation ( c) and human EBP containing the R147H mutation (d).
Figure 4: Sterol-Δ8-isomerase mutant proteins are stable.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Happle, R. X-linked dominant chondrodysplasia punctata. Review of literature and report of a case. Hum. Genet. 53, 65– 73 (1979).

    Article  CAS  Google Scholar 

  2. Happle, R. X-linked dominant chondrodysplasia punctata/ichthyosis/cataract syndrome in males. Am. J. Med. Genet. 57, 493 (1995).

    Article  CAS  Google Scholar 

  3. Sutphen, R., Amar, M.J., Kousseff, B.G. & Toomey, K.E. XXY male with X-linked dominant chondrodysplasia punctata (Happle syndrome). Am. J. Med. Genet. 57, 489– 492 (1995).

    Article  CAS  Google Scholar 

  4. Kelley, R.I. et al. Abnormal sterol metabolism in patients with Conradi-Hunermann-Happle syndrome and sporadic lethal chondrodysplasia punctata. Am. J. Med. Genet. 83, 213–219 (1999).

    Article  CAS  Google Scholar 

  5. Hanner, M. et al. Phenylalkylamine Ca2+ antagonist binding protein. Molecular cloning, tissue distribution, and heterologous expression. J. Biol. Chem. 270, 7551–7557 (1995).

    Article  CAS  Google Scholar 

  6. Schindelhauer, D. et al. Long-range map of a 3.5-Mb region in Xp11.23-22 with a sequence-ready map from a 1.1-Mb gene-rich interval. Genome Res. 6 , 1056–1069 (1996).

    Article  CAS  Google Scholar 

  7. Tint, G.S. et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N. Engl. J. Med. 330, 107– 113 (1994).

    Article  CAS  Google Scholar 

  8. Fitzky, B.U. et al. Mutations in the Δ7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome. Proc. Natl Acad. Sci USA 95, 8181–8186 (1998).

    Article  CAS  Google Scholar 

  9. Bjorkhem, I. et al. Correlation between serum levels of cholesterol precursors and activity of HMG-CoA reductase in human liver. J. Lipid Res. 28, 1137–1143 ( 1987).

    CAS  Google Scholar 

  10. Moebius, F.F. et al. Purification and amino-terminal sequencing of the high affinity phenylalkylamine Ca2+ antagonist binding protein from guinea pig liver endoplasmic reticulum. J. Biol. Chem. 269 , 29314–29320 (1994).

    CAS  PubMed  Google Scholar 

  11. Silve, S. et al. Emopamil-binding protein, a mammalian protein that binds a series of structurally diverse neuroprotective agents, exhibits Δ87 sterol isomerase activity in yeast. J. Biol. Chem. 271, 22434–22440 (1996).

    Article  CAS  Google Scholar 

  12. Moebius, F.F. et al. Histidine77, glutamic acid81, glutamic acid123, threonine126, asparagine194, and tryptophan197 of the human emopamil binding protein are required for in vivo sterol Δ87 isomerization. Biochemistry 38, 1119–1127 (1999).

    Article  CAS  Google Scholar 

  13. Ashman, W.H., Barbuch, R.J., Ulbright, C.E., Jarrett, H.W. & Bard, M. Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids 26, 628 –632 (1991).

    Article  CAS  Google Scholar 

  14. Herman, G.E. & Walton, S.J. Close linkage of the murine locus bare patches to the X-linked visual pigment gene: implications for mapping human X-linked dominant chondrodysplasia punctata. Genomics 7, 307–312 (1990).

    Article  CAS  Google Scholar 

  15. Herman, G.E. et al. The gene mutated in bare patches and striated mice encodes a novel 3β-hydroxysteroid dehydrodenase. Nature Genet. 22, 182–187 (1999).

    Article  Google Scholar 

  16. FitzPatrick, D.R. et al. Clinical phenotype of desmosterolosis. Am. J. Med. Genet. 75, 145–152 (1998).

    Article  CAS  Google Scholar 

  17. Cooper, M.K., Porter, J.A., Young, K.E. & Beachy, P.A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998).

    Article  CAS  Google Scholar 

  18. Porter, J.A., Young, K.E. & Beachy, P.A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255– 259 (1996).

    Article  CAS  Google Scholar 

  19. Karaplis, A.C. et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8, 277–289 (1994).

    Article  CAS  Google Scholar 

  20. Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663– 666 (1996).

    Article  CAS  Google Scholar 

  21. Chuang, P.T. & McMahon, A.P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621 (1999).

    Article  CAS  Google Scholar 

  22. Derry, J.M.J et al. Mutations in a Δ87 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata Nature Genet. 22, 286- 293 (1999).

    Article  CAS  Google Scholar 

  23. Kelley, R.I. Diagnosis of Smith-Lemli-Opitz syndrome by gas chromatography/mass spectrometry of 7-dehydrocholesterol in plasma, amniotic fluid and cultured skin fibroblasts. Clin. Chim. Acta 236, 45– 58 (1995).

    Article  CAS  Google Scholar 

  24. Brody, L.C. et al. Ornithine-δ-aminotransferase mutations causing gyrate atrophy: allelic heterogeneity and functional consequences. J. Biol. Chem. 267, 3302–3307 (1992).

    CAS  PubMed  Google Scholar 

  25. Braverman, N. et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nature Genet. 15, 369–376 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the International Skeletal Dysplasia Registry for tissue donations by L. Raffel, A. Soffici, M. Bendon and D. Agamanolis, and G. Nyakatura for providing the DNA sequence of cosmid clone LLNc110A0842 and S. Muscelli for assistance with preparation of this manuscript. This work was supported in part by a NIH grant to the Kennedy Krieger Institute (PO1HD10981, D.V.) and to the General Clinical Research Centers (RR00052 and RR00722, N.B.) and Human Frontiers Sciences Project (F.F.M.), Fonds zur förderung der wissenschaftlichen Forschung (P11636 (HG)) and the Oesterreische Nationalbank (P6515 (HG)). D.V. is an Investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braverman, N., Lin, P., Moebius, F. et al. Mutations in the gene encoding 3β- hydroxysteroid-Δ87- isomerase cause X-linked dominant Conradi-Hünermann syndrome. Nat Genet 22, 291–294 (1999). https://doi.org/10.1038/10357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing