Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of single-nucleotide polymorphisms in coding regions of human genes

A Correction to this article was published on 01 November 1999

Abstract

A major goal in human genetics is to understand the role of common genetic variants in susceptibility to common diseases. This will require characterizing the nature of gene variation in human populations, assembling an extensive catalogue of single-nucleotide polymorphisms (SNPs) in candidate genes and performing association studies for particular diseases. At present, our knowledge of human gene variation remains rudimentary. Here we describe a systematic survey of SNPs in the coding regions of human genes. We identified SNPs in 106 genes relevant to cardiovascular disease, endocrinology and neuropsychiatry by screening an average of 114 independent alleles using 2 independent screening methods. To ensure high accuracy, all reported SNPs were confirmed by DNA sequencing. We identified 560 SNPs, including 392 coding-region SNPs (cSNPs) divided roughly equally between those causing synonymous and non-synonymous changes. We observed different rates of polymorphism among classes of sites within genes (non-coding, degenerate and non-degenerate) as well as between genes. The cSNPs most likely to influence disease, those that alter the amino acid sequence of the encoded protein, are found at a lower rate and with lower allele frequencies than silent substitutions. This likely reflects selection acting against deleterious alleles during human evolution. The lower allele frequency of missense cSNPs has implications for the compilation of a comprehensive catalogue, as well as for the subsequent application to disease association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minor allele frequency by polymorphism type.
Figure 2: Distribution of nucleotide diversity.

Similar content being viewed by others

References

  1. Ayala, F.J., Escalante, A., O'Huigin, C. & Klein, J. Molecular genetics of speciation and human origins. Proc. Natl Acad. Sci. USA 91, 6787–6794 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Collins, F.S., Guyer, M.S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580– 1581 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Lander, E.S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Saunders, A.M. et al. Association of apolipoprotein E allele ε 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Bertina, R.M. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369, 64– 67 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273 , 1856–1862 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Corder, E.H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genet. 7, 180–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Moriyama, E.N. & PowelI, J.R. Intraspecific nuclear DNA variation in Drosophila. Mol. Biol. Evol. 13, 261– 277 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, H. The Principles of Biochemical Genetics (North-Holland/Elsevier, Amsterdam, 1975).

  11. Harding, R.M. et al. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet. 60, 772–789 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nickerson, D.A. et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233– 240 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Li, W.-H. & Sadler, L.A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Underhill, P.A. et al. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc. Natl Acad. Sci. USA 93, 196–200 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, W.-H. Molecular Evolution (Sinauer Associates, Canada, 1997 ).

  18. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Begun, D.J. & Aquadro, C.F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster . Nature 356, 519–520 (1993).

    Article  Google Scholar 

  20. Nachman, M.W., Bauer, V.L. Crowell, S.L. & Aquadro, C.F. DNA variability and recombination rates at X-linked loci in humans. Genetics 150, 1133–1141 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wayne, M.L. & Simonson, K.L. Statistical tests of neutrality in the age of weak selection. Trends Ecol. Evol. 13 , 236 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Watterson, G.A. & Guess, H.A. Is the most frequent allele the oldest? Theor. Popul. Biol. 11, 141–160 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. Zietkiewicz, E. et al. Nuclear DNA diversity in worldwide distributed human populations. Gene 205, 161–171 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes regulating blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Eyre-Walker. A. & Keightley, P. High genomic deleterious mutations rates in hominids. Nature 397 , 344–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Weber, J.L. & Myers, E.W. Human whole-genome shotgun sequencing. Genome Res. 7, 401–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Venter, J.C. et al. Shotgun sequencing of the human genome. Science 280, 1540–1542 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  29. Clark, A.G. et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Day, D.J., Speiser, P.W., White, P.C. & Barany, F. Detection of steroid-21 hydroxylase alleles using gene specific PCR and a multiplex ligation detection reaction. Genomics 29 152–162 (1995).

  31. Nickerson D.A., Tobe, V.O. & Taylor, S.L. PolyPhred: automating the detection and genotyping of single nucleotide substitution using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745–2751 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Lander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cargill, M., Altshuler, D., Ireland, J. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22, 231–238 (1999). https://doi.org/10.1038/10290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing