Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator

Abstract

In an attempt to create an animal model of tissue-specif ic mitochondrial disease, we generated ‘knockout’ mice deficient in the heart/muscle isoform of the adenine nucleotide translocator (Ant1). Histological and ultrastructural examination of skeletal muscle from Ant1 null mutants revealed ragged-red muscle fibers and a dramatic proliferation of mitochondria, while examination of the heart revealed cardiac hypertrophy with mitochondrial proliferation. Mitochondria isolated from mutant skeletal muscle exhibited a severe defect in coupled respiration. Ant1 mutant adults also had a resting serum lactate level fourfold higher than that of controls, indicative of metabolic acidosis. Significantly, mutant adults manifested severe exercise intolerance. Therefore, Ant1 mutant mice have the biochemical, histological, metabolic and physiological characteristics of mitochondrial myopathy and cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shanske, S. & DiMauro, S. Mitochondrial myopathies: biochemical aspects. Curr. Top. Bioenerg. 17, 21–58 (1994).

    Article  CAS  Google Scholar 

  2. Servidei, S., Bertini, E. & DiMauro, S. Hereditary metabolic cardiomyopathies. Adv. Pediatr. 41, 1–32 (1994).

    CAS  PubMed  Google Scholar 

  3. Brown, M.D. & Wallace, D.C. Molecular basis of mitochondrial DNA disease. J. Bioenerg. Biomembr. 26, 273–289 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Klingenberg, M. Structure-function of the ADP/ATP carrier. Biochem. Soc. Trans. 20, 547–550 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. O'Malley, K., Pratt, P., Robertson, J., Lilly, M. & Douglas, M.G. Selection of the nuclear gene for the mitochondrial adenine nucleotide translocator by genetic complementation of the op1 mutation in yeast. J. Biol. Chem. 257, 2097–2103 (1982).

    CAS  PubMed  Google Scholar 

  6. Lawson, J.E. & Douglas, M.G. Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae: isolation and analysis of AAC2. J. Biol. Chem. 263, 14812–14818 (1988).

    CAS  PubMed  Google Scholar 

  7. Kolarov, J., Kolarova, N. & Nelson, N. A third ADP/ATP translocator gene in yeast. J. Biol. Chem. 265, 12711–12716 (1990).

    CAS  PubMed  Google Scholar 

  8. Rasmussen, U.B. & Wohlrab, H. Bovine cardiac mitochondrial ADP/ATP-carrier: two distinct mRNAs and an unusually short 3′-noncoding sequence. Biochem. Biophys. Res. Commun. 138, 850–857 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Powell, S.J., Medd, S.M., Runswick, M.J. & Walker, J.E. Two bovine genes for mitochondrial ADP/ATP translocase expressed differences in various tissues. Biochem. 28, 866–873 (1989).

    Article  CAS  Google Scholar 

  10. Shinohara, Y., Kamida, M., Yamazaki, N. & Terada, H. Isolation and characterization of cDNA clones and a genomic clone encoding rat mitochondrial adenine nucleotide translocator. Biochim. Biophys. Acta 1152, 192–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Cozens, A.L., Runswick, M.J. & Walker, J.E. DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J. Mol. Biol. 206, 261–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Li, K. et al. A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed. J. Biol. Chem. 264, 13998–14004 (1989).

    CAS  PubMed  Google Scholar 

  13. Chen, S.T. et al. A human ADP/ATP translocase gene has seven pseudogenes and localizes to chromosome X.Somat. Cell Mol. Genet 16, 143–149 (1990).

    Article  CAS  Google Scholar 

  14. Ku, D.H. et al. The human fibroblast adenine nucleotide translocator gene: molecular cloning and sequence. j. Biol. Chem. 265, 16060–16063 (1990).

    CAS  PubMed  Google Scholar 

  15. Stepien, G., Torroni, A., Chung, A.B., Hodge, J.A. & Wallace, D.C. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. j. Biol. Chem. 267, 14592–14597 (1992).

    CAS  PubMed  Google Scholar 

  16. Wallace, D.C. et al. Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim. Biophys. Acta 1271, 141–151 (1995).

    Article  PubMed  Google Scholar 

  17. Mills, K.A., Ellison, J.W. & Mathews, K.D., Ant1 gene maps near Klk3 on proximal mouse chromosome 8. Mamm. Genome 7, 707 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Haraguchi, Y. et al. Genetic mapping of human heart-skeletal muscle adenine nucleotide translocator and its relationship to the facioscapulohumeral muscular dystrophy locus. Genomics 16, 479–485 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Wijmenga, C. et al. The human skeletal muscle adenine nucleotide translocator gene maps to chromosome 4q35 in the region of the facioscapulohumeral muscular dystrophy locus. Hum. Genet. 92, 198–203 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Ellison, J.W., Li, X., Francke, U. & Shapiro, L.J. Rapid evolution of human pseudoautosomal genes and their mouse homologs. Mamm. Genome 7, 25–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Schambra, U.B., Lauder, J.M. & Silver, J. Atlas of the Prenatal Mouse Brain 1–327 (Academic Press, San Diego, 1992).

    Chapter  Google Scholar 

  23. DiMauro, S., Bonilla, E., Zeviani, M., Nakagawa, M. & DeVivo, D.C. Mitochondrial myopathies. Ann. Neurol. 17, 521–538 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Barth, E., Stammler, G., Speiser, B. & Schaper, J. Ultrastructural quantitation of mitochondria and myof ilaments in cardiac muscle from 10 different animal species including man. J. Mol. Cell. Cardiol. 24, 669–681 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Hatchell, P.L. & Maclnnes, J.W. A quantitative analysis of the genetics of resting blood lactic acid levels in mice. Genetics 75, 191–198 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Munnich, A. et al. Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur. J. Pediatr. 155, 262–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Wallace, D.C. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601–610 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Wasserman, K., Hansen, J.E., Sue, D.Y. & Whipp, B.J. Principles of Exercise Testing and Interpretation, 1–274 (Lea & Febiger, Philadelphia, 1987).

    Google Scholar 

  29. Bakker, H.D. et al. Deficiency of the adenine nucleotide translocator in muscle of a patient with myopathy and lactic acidosis: a new mitochondrial defect. Pediatr. Res. 33, 412–417 (1993).

    CAS  PubMed  Google Scholar 

  30. Bakker, H.D. et al. Adenine nucleotide translocator deficiency in muscle: potential therapeutic value of vitamin E. J. Inherit. Metab. Dis. 16, 548–552 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Wallace, D.C. 1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging. Am. J. Hum. Genet. 57, 201–223 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pette, D. & Vrbova, G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8, 676–689 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Salmons, S. & Henriksson, J. The adaptive response of skeletal muscle to increased use. Muscle Nerve 4, 94–105 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. Williams, R.S., Salmons, S., Newsholme, E.A., Kaufman, R.E. & Mellor, J. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. j. Biol. Chem. 261, 376–380 (1986).

    CAS  PubMed  Google Scholar 

  35. Levak-Frank, S. et al. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. j. Clin. Invest. 96, 976–986 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung, A.B., Stepien, G., Haraguchi, Y., Li, K. & Wallace, D.C. Transcriptional control of nuclear genes for the mitochondrial muscle ADP/ATP translocator and the ATP synthase beta subunit.Multiple factors interact with the OXBOX/REBOX promoter sequences. j. Biol. Chem. 267, 21154–21161 (1992).

    CAS  PubMed  Google Scholar 

  37. Haraguchi, Y., Chung, A.B., Neill, S. & Wallace, D.C. OXBOX and REBOX, overlapping promoter elements of the mitochondrial FOF1-ATP synthase beta subunit gene.OXBOX/REBOX in the ATPsyn beta promoter. j Biol. Chem. 269, 9330–9334 (1994).

    CAS  PubMed  Google Scholar 

  38. Li, K., Hodge, J.A. & Wallace, D.C. OXBOX, a positive transcriptional element of the heart-skeletal muscle ADP/ATP translocator gene. j. Biol. Chem. 265, 20585–20588 (1990).

    CAS  PubMed  Google Scholar 

  39. Neckelmann, N., Li, K., Wade, R.P., Shuster, R. & Wallace, D.C. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc. Natl. Acad. Sci. USA 84, 7580–7584 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  41. Battini, R. et al. Molecular cloning of a cDNA for a human ADP/ATP carrier which is growth-regulated. J. Biol. Chem. 262, 4355–359 (1987).

    CAS  PubMed  Google Scholar 

  42. Pfanner, N. & Neupert, W. Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262, 7528–7536 (1987).

    CAS  PubMed  Google Scholar 

  43. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. & Randall, R.J. Protein measurement with the Folin phenol reagent. j. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  44. MacGregor, G.R., Zambrowicz, B.P. & Soriano, P. Tissue nonspecific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121, 1487–1496 (1995).

    CAS  PubMed  Google Scholar 

  45. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Ramirez-Solis, R., Davis, A.C. & Bradley, A. Gene targeting in embryonic stem cells, in Guide to Techniques in Mouse Development, Vol. 225 (eds Wassarman, P.M. & DePamphilis, M.L.) 855–878 (Academic Press, San Diego, 1993).

  47. Stewart, C.L. Production of chimeras between embryonic stem cells and embryos, in Guide to Techniques in Mouse Development, Vol. 225 (eds Wassarman, P.M. & DePamphilis, M.L) 823–855 (Academic Press, San Diego, 1993).

  48. Dubowitz, V. Muscle biopsy: a practical approach (Lavenham Press, 1985).

    Google Scholar 

  49. Rifai, Z., Welle, S., Kamp, C. & Thornton, C.A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol. 37, 24–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Sheehan, D.C. & Hrapschak, B.B. Theory and Practice of Histotechnology (Batelle Press, Columbus, Ohio, 1980).

    Google Scholar 

  51. Blau, D.M. & Compans, R.W. Entry and release of measles virus are polarized in epithelial cells. Virology 210, 91–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Trounce, I.A., Kim, Y.L., Jun, A.S. & Wallace, D.C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Steel, B.F., Reynolds, M.S. & Baumann, C.A. Effect of diet on amino acids in blood and urine of mice of various ages. Arch. Biochem. 25, 124–132 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, B., Waymire, K., Cottrell, B. et al. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16, 226–234 (1997). https://doi.org/10.1038/ng0797-226

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0797-226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing