Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A translocation interrupts the COL5A1 gene in a patient with Ehlers–Danlos syndrome and hypomelanosis of Ito

Abstract

Ehlers-Danlos syndrome (EDS) is a genetically and pathogenetically heterogeneous group of disorders of which at least 11 types have been described1. All are connective tissue disorders characterized by defects of the skin, ligaments and blood vessels with the clinical spectrum ranging from innocuous findings to lethality. Mutations in the genes encoding the major fibrillar collagen types I and III have been demonstrated in EDS types VII and IV, respectively2,3, while mutations in the lysyl hydroxylase and ATP7A genes, with roles in collagen cross-linking, are responsible for EDS types VI4 and IX5. The biochemical and molecular bases for the most common forms of EDS (types I, II and III) are unknown. Here, we describe a balanced translocation between chromosome 9 and an X chromosome that disrupts the minor fibrillar collagen type V gene COL5A1 in a patient with both EDS type I and hypomelanosis of Ito. The breakpoint occurs at 9q34 within COL5A1 intron 24 and interestingly, within a LINE-1 (L1) element at Xp21.1. A fusion mRNA between COL5A1 and an Alu sequence is produced, but no aberrant protein is detectable. Rather, the amount of type V collagen is reduced in the patient's fibroblasts, suggesting haploinsufficiency as a cause of the phenotype. This demonstrates that a mutation in a type V collagen gene, COL5A1, results in EDS type I, and shows the involvement of L1 sequences in a constitutional chromosomal translocation. Because collagen type V is a het-eromorphic protein in which molecules may be composed of polypeptides encoded by three COL5A genes, this suggests all three genes as candidates for mutations in EDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beighton, P., Ehlers-Danlos syndromes, in McKusick's Heritable Disorders of Connective Tissue, 5th edn. (ed. Beighton, P.) 189–251 (Mosby-Year Book Inc., St. Louis, 1993).

    Google Scholar 

  2. Byers, P.H. Disorders of collagen biosynthesis and structure, in The Metabolic and Molecular Bases of Inherited Disease, 7th edn. (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 4029–4077 (McGraw-Hill, New York, 1995).

    Google Scholar 

  3. Prockop, D.J. & Kivirikko, K.I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  Google Scholar 

  4. Hyland, J. et al. A homozygous stop codon in the lysyl hydroxylase gene in two siblings with Ehlers-Danlos syndrome type VI. Nature Genet. 2, 228–231 (1992).

    Article  CAS  Google Scholar 

  5. Kaler, S.G. et al. Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus. Nature Genet. 8, 195–202 (1994).

    Article  CAS  Google Scholar 

  6. Rosenberg, S., Arita, F.N., Campos, C. & Alonso, F. Hypomelanosis of Ito: case report with involvement of the central nervous system and review of the literature. Neuropediatrics 15, 52–55 (1984).

    Article  Google Scholar 

  7. Greenspan, D.S. et al. Human collagen gene COL5A1 maps to the q34.2–q34.3 region of chromosome 9, near the locus for nail–patella syndrome. Genomics 12, 836–837 (1992).

    Article  CAS  Google Scholar 

  8. Takahara, K., Hoffman, G.G. & Greenspan, D.S. Complete structural organization of the human 1(V) collagen gene (COL5A1): divergence from the conserved organization of other characterized fibrillar collagen genes. Genomics 29, 588–597 (1995).

    Article  CAS  Google Scholar 

  9. Isegawa, Y. et al. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1. Mol. Cell. Probes. 6, 467–475 (1992).

    Article  CAS  Google Scholar 

  10. Hutchison, C.A., Hardies, S.C., Loeb, D.D., Shehee, W.R. & Edgell, M.H. LINEs and related retroposons: long interspersed repeated sequences in the eucaryotic genome, in Mobile DNA (eds Berg, D. & Howe, M.) 593–617 (Am. Soc. Microbiol., Washington, DC, 1989).

    Google Scholar 

  11. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian, H.H. Jr., Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    Article  CAS  Google Scholar 

  12. Scott, A.F. et al. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1, 113–125 (1987).

    Article  CAS  Google Scholar 

  13. Budarf, M.L. et al. Cloning a balanced translocation associated with DiGeorge syndrome and identification of a disrupted candidate gene. Nature Genet. 10, 269–278 (1995).

    Article  CAS  Google Scholar 

  14. Holmes, S.E., Dombroski, B.A., Krebs, C.M., Boehm, C.D. & Kazazian, H.H. Jr., A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nature Genet. 143–148 (1994).

    Article  CAS  Google Scholar 

  15. Miki, Y. et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52, 643–645 (1992).

    CAS  Google Scholar 

  16. von Lindern, M., Breems, D., van Baal, S., Adriaansen, H. & Grosveld, G. Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chrom. Cancer 5, 227–234 (1992).

    Article  CAS  Google Scholar 

  17. Takahara, K. et al. Complete primary structure of human collagen α1(V) chain. J. Biol. Chem. 266, 13124–13129 (1991).

    CAS  PubMed  Google Scholar 

  18. Greenspan, D.S., Cheng, W. & Hoffman, G.G. The pro1(V) collagen chain: complete primary structure, distribution of expression, and comparison with the pro- 1(XI) collagen chain. J. Biol. Chem. 266, 24727–24733 (1991).

    CAS  PubMed  Google Scholar 

  19. Willing, M.C. et al. Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. Am. J. Hum. Genet. 55, 638–647 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenspan, D.S. et al. COL5A1: fine genetic mapping and exclusion as candidate gene in families with nail–patella syndrome, tuberous sclerosis 1, hereditary hemorrhagic telangiectasia, and Ehlers-Danlos syndrome type II. Genomics 25, 737–739 (1995).

    Article  CAS  Google Scholar 

  21. Loughlin, J. et al. Linkage of the gene that encodes the alpha-1 chain of type V collagen (COL5A1) to type II Ehlers-Danlos syndrome (EDS II). Hum Molec. Genet. 4, 1649–1651 (1995).

    Article  CAS  Google Scholar 

  22. Nicholls, A.C., McCarron, S., Narcisi, P. & Pope, F.M. Molecular abnormalities of type V collagen in Ehlers Danlos syndrome. Am J. Hum. Genet. 55, A233 (1994).

    Google Scholar 

  23. Birk, D.E., Fitch, J.M., Babiarz, J.P., Doane, K.J. & Linsenmayer, T.F. Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 95, 649–657 (1990).

    CAS  PubMed  Google Scholar 

  24. Vogel, A., Holbrook, K.A., Steinmann, B., Gitzelmann, R. & Byers, P.H. Abnormal collagen fibril structure in the gravis form (type I) of Ehlers-Danlos syndrome. Lab. Invest. 40, 201–206 (1979).

    CAS  PubMed  Google Scholar 

  25. Andrikopoulos, K., Liu, X., Keene, D.R., Jaenisch, R. & Ramirez, F. Targeted mutation in the COL5A2 gene reveals a regulatory role for type V collagen during matrix assembly. Nature Genet. 9, 31–36 (1995).

    Article  CAS  Google Scholar 

  26. Ritter, C.L., Steele, M.W., Wenger, S.L. & Coher, B.A. Chromosome mosaicism in hypomelanosis of Ito. Am. J. Med. Genet. 35, 14–17 (1990).

    Article  CAS  Google Scholar 

  27. Sybert, V.P. Hypomelanosis of Ito: a description, not a diagnosis. J. Invest. Dermatol. 103, 141S–143S (1994).

    Article  CAS  Google Scholar 

  28. Happle, R. Tentative assignment of hypomelanosis of Ito to 9q33–qter. Hum. Genet. 75, 98–99 (1987).

    CAS  PubMed  Google Scholar 

  29. Latt, S.A., Willard, H.F. & Gerald, P.S. BrdU-33258 Hoechst analysis of DNA replication in human lymphocytes and supernumerary or structurally abnormal X chromosomes. Chromosoma. 57, 135–153 (1976).

    Article  CAS  Google Scholar 

  30. Lichter, P. et al. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69 (1990).

    Article  CAS  Google Scholar 

  31. Lemieux, N., Dutrillaux, B. & Viegas-Pequignot, E. A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenet. Cell Genet. 59, 311–312 (1992).

    Article  CAS  Google Scholar 

  32. Takahara, K., Lyons, G.E. & Greenspan, D.S. Bone morphogenetic protein-1 and a mammalian tolloid homologue (mTId) are encoded by alternatively spliced transcripts which are differentially expressed in some tissues. J. Biol. Chem. 269, 32572–32578 (1994).

    CAS  PubMed  Google Scholar 

  33. Bonadio, J., Holbrook, K.A., Gelinas, R.E., Jacob, J. & Byers, P.H. Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis. J. Biol. Chem. 260, 1734–1742 (1985).

    CAS  PubMed  Google Scholar 

  34. Barnes, W.M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from bacteriophage templates. Proc. Natl. Acad. Sci. USA 91, 2216–2220 (1994).

    Article  CAS  Google Scholar 

  35. Cheng, S., Fockler, C., Barnes, W.M. & Higuchi, R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. USA 91, 5695–5699 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Glover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toriello, H., Glover, T., Takahara, K. et al. A translocation interrupts the COL5A1 gene in a patient with Ehlers–Danlos syndrome and hypomelanosis of Ito. Nat Genet 13, 361–365 (1996). https://doi.org/10.1038/ng0796-361

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing