Identification of the murine beige gene by YAC complementation and positional cloning


The beige mutation is a murine autosomal recessive disorder, resulting in hypopigmentation, bleeding and immune cell dysfunction. The gene defective in beige is thought to be a homologue of the gene for the human disorder Chediak–Higashi syndrome. We have identified the murine beige gene by in vitro complementation and positional cloning, and confirmed its identification by defining mutations in two independent mutant alleles. The sequence of the beige gene message shows strong nucleotide homology to multiple human ESTs, one or more of which may be associated with the Chediak–Higashi syndrome gene. The amino acid sequence of the Beige protein revealed a novel protein with significant amino acid homology to orphan proteins identified in Saccharomyces cerevisiae, Caenorhabditis elegans and humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Spicer, S.S., Sato, A., Vincent, R., Eguchi, M. & Poon, K.C. Lysosome enlargement in the Chediak-Higashi syndrome. Fed. Proc. 40, 1451–1455 (1981).

    CAS  PubMed  Google Scholar 

  2. 2

    Lutzner, M.A., Tierney, J.H. & Benditt, E.R. Giant granules and widespread cytoplasmic inclusions in a genetic syndrome of Aleutian Mink. Lab. Invest. 14, 2063–2079 (1966).

    Google Scholar 

  3. 3

    Kramer, J.W., Davis, W.C. & Prieur, D.J., The Chediak-Higashi syndrome of cats. Lab. Invest. 36, 554 (1977).

    CAS  PubMed  Google Scholar 

  4. 4

    Padget, G.A., Leader, R.W., Gorham, J.R. & O'Mary, C.C. The familial occurrence of the Chediak-Higashi syndrome in mink and cattle. Genetics 49, 505–512 (1964).

    Google Scholar 

  5. 5

    Taylor, R.F. & Farrell, R.K. Light and electron microscopy of peripheral blood neutrophils in a killer whale affected with Chediak-Higashi syndrome. Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 822A (1973).

    Google Scholar 

  6. 6

    Perou, C.M. & Kaplan, J. Complementation analysis of Chediak-Higashi Syndrome: the same gene may be responsible for the defect in all patients and species. Somat. Cell Mol. Genet. 19, 459–468 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Perou, C.M., Justice, M.J., Pryor, R.J. & Kaplan, J. Complementation of the Beige mutation in cultured cells by episomally-replicating murine yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 93, 5905–5909 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Novak, E.K., Hui, S.-W. & Swank, R.T. Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood 63, 536–544 (1984).

    CAS  Google Scholar 

  9. 9

    White, R.A. et al. The murine pallid mutation is a platelet storage pool disease associated with the protein 4.2 (pallidin) gene. Nature Genet. 2, 80–83 (1992).

    CAS  Article  Google Scholar 

  10. 10

    Haak, R.A., Ingraham, L.A., Baehner, R.L. & Boxer, L.A. Membrane fluidity in humans and mouse Chediak-Higashi leukocytes. J. Clin. Invest. 64, 138–143 (1979).

    CAS  Article  Google Scholar 

  11. 11

    Oliver, J.M., Zurier, R.B. & Berlin, R.D. Concanavalin A cap formation on polymorphonuclear leukocytes of normal and beige (Chediak-Higashi) mice. Nature 253, 471–473 (1975).

    CAS  Article  Google Scholar 

  12. 12

    Perou, C.M. & Kaplan, J. Chediak-Higashi Syndrome is not due to a defect in microtubule-based lysosomal mobility. J. Cell Sci. 106, 99–107 (1993).

    PubMed  Google Scholar 

  13. 13

    Oliver, J.M., Krawiec, J.A. & Berlin, R.D. Carbamycholine prevents giant granule formation in cultured fibroblasts from beige (Chediak-Higashi) mice. J. Cell Biol. 69, 205–210 (1976).

    CAS  Article  Google Scholar 

  14. 14

    Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Rodriguez, F., Martegani, E., Mauri, I. & Alberghina, L. The sequence of 8.8kb of yeast chromosome III cloned in lambda PM3270 contains an unusual long ORF (YCR601). Yeast 7, 631–641 (1991).

    CAS  Article  Google Scholar 

  17. 17

    Wilson, R. et al. 2.2Mb of contiguous nucleotide sequence from chromosome III of C.elegans . Nature 368, 32–38 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Feuchter, A.E., Freeman, J.D. & Mager, D.L. Strategy for detecting cellular transcripts promoted by human endogenous long terminal repeats: identification of a novel gene (CDC4L) with homology to yeast CDC4. Genomics 13, 1237–1246 (1992).

    CAS  Article  Google Scholar 

  19. 19

    van der Voorn, L. & Ploegh, H.L. The WD-40 Repeat. FEBS Lett. 307, 131–134 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Duronio, R.J., Gordon, J.I. & Boguski, M.S. Comparative analysis of the beta-transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is diveigently transcribed from NMT1. Proteins 13, 41–66 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Wang, D.S., Shaw, R., Winkelmann, J.C. & Shaw, G. Binding of PH domains of beta-adrenergic receptor kinase and beta-spectrin to WD40/beta-transducin repeat containing regions of the beta-subunit of trimeric G-proteins. Biochem. Biophys. Res. Comm. 203, 29–35 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Kelley, E.M. Mouse News Lett. 16, 36 (1957).

    Google Scholar 

  23. 23

    Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the eariy endocytic pathway. Cell 70, 715–728 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Zerial, M. & Stenmark, H. GTPases in vesicular transport. Curr. Opin. Cell Biol. 5, 613–620 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Colombo, M.I., Mayorga, L.S., Nishimoto, I., Ross, E.M. & Stahl, P.D. Gs regulation of endosome fusion suggests a role for signal transduction pathways in endocytosis. J. Biol. Chem. 269, 14919–14923 (1994).

    CAS  PubMed  Google Scholar 

  26. 26

    Balch, W.E., GTP-binding proteins in vesicular transport. TIBS 15, 473–477 (1990).

    PubMed  Google Scholar 

  27. 27

    Elazar, Z. et al. ADP-ribosylatton factor and coatamer couple fusion to vesicle budding. J. Cell Biol. 124, 415–424 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Gnirke, A., Huxley, C., Peterson, K. & Olson, M. Microinjection of Intact 200- to 500-kb Fragments of YAC DNA into Mammalian Cells. Genomics 9, 742–750 (1991).

    Article  Google Scholar 

  29. 29

    Jenkins, N.A., Copeland, N.G., Taylor, B.A. & Lee, B.K. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus . J. Virol. 43, 26–36 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680 (1994).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perou, C., Moore, K., Nagle, D. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nat Genet 13, 303–308 (1996).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing