Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia


Hypochondroplasia (MIM 146000) is an autosomal dominant skeletal dysplasia with skeletal features similar to but milder than those seen in achondroplasia1–4. Within the past year, the achondroplasia locus has been mapped to 4p16.3 (refs 5–7) and mutations in the fibroblast growth factor receptor 3 (FGFR3) gene have been identified in patients with the disorder8,9. More than 95% of 242 cases reported so far are accounted for by a single Gly380Arg mutation8–11. McKusick et al.12 proposed that achondroplasia and hypochondroplasia are allelic based on the similarities in phenotype between the two disorders and the identification of a severely dwarfed individual whose father had achondroplasia and whose mother had hypochondroplasia. There is also genetic linkage evidence that hypochondroplasia and achondroplasia map to the same locus6,13. We therefore began a systematic screening of FGFR3 to detect mutations in patients with hypochondroplasia. We now report a single FGFR3 mutation found in 8 out of 14 unrelated patients with hypochondroplasia. This mutation causes a C to A transversion at nucleotide 1620, resulting in an Asn540Lys substitution in the proximal tyrosine kinase domain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Walker, B.A., Murdoch, J.L., McKusick, V.A., Langer, L.O. & Beals, R.K. Hypochondroplasia. Am. J. Dis. Child. 122, 95–104 (1971).

    CAS  PubMed  Google Scholar 

  2. Hall, B.D. & Spranger, J., Clinical and radiological aspects in 39 cases. Radiology 133, 95–100 (1979).

    Article  CAS  Google Scholar 

  3. Wynne-Davies, R., Walsh, W.K. & Gormley, J. Achondroplasia and hypochondroplasia: Clinical variation and spinal stenosis. J. Bone Jt. Surg. 63-B, 508–515 (1981).

    Article  Google Scholar 

  4. Maroteaux, P. & Falzon, P. Arch. Fr. Pediatr. 46, 105–109 (1988).

    Google Scholar 

  5. Velinov, M. et al. The gene for achondroplasia maps to the telomeric region of chromosome 4p. Nature Genet. 6, 314–317 (1994).

    Article  CAS  Google Scholar 

  6. Le Merrer, M. et al. A gene for achondroplasia-hypochondroplasia maps to chromosome 4p. Nature Genet. 6, 318–321 (1994).

    Article  CAS  Google Scholar 

  7. Francomano, C.A. et al. Localization of the achondrolasia gene to the distal 2.5Mb of human chromosome 4p. Hum. molec. Genet. 3, 787–792 (1994).

    Article  CAS  Google Scholar 

  8. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  Google Scholar 

  9. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  Google Scholar 

  10. Bellus, G.A. et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. hum. Genet. 56, 368–373 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pauli, R.M., Horton, V.K., Glinski, L.P. & Reiser, C.A. Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. Am. J. hum. Genet. 56, 732–744 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McKusick, V.A., Kelly, T.E. & Dorst, J.P. Observations suggesting allelism of the hypochondroplasia and achondroplasia genes. J. med. Genet. 10, 11–16 (1973).

    Article  CAS  Google Scholar 

  13. Hecht, J.T. et al. Confirmatory linkage of hypochondroplasia to chromosome 4p. J. med. Genet, (in the press).

  14. Stoilov, I., Kilpatrick, M.W. & Tsipouras, P. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia. Am. J. med. Genet. 55, 127–133 (1995).

    Article  CAS  Google Scholar 

  15. Tavormina, P.L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    Article  CAS  Google Scholar 

  16. Rousseau, F. et al. Stop codon FGFR3 mutations in thanatophoric dwarfism type1. Nature Genet. 10, 11–12 (1995).

    Article  CAS  Google Scholar 

  17. Johnson, D.E. & Williams, L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Can. Res. 60, 1–41 (1993).

    CAS  Google Scholar 

  18. Muenke, M. et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet. 8, 269–274 (1994).

    Article  CAS  Google Scholar 

  19. Reardon, W., Winter, R.M., Rutland, P., Pulleyn, L.J., Jones, B.M. & Malcolm, S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet. 8, 98–103 (1994).

    Article  CAS  Google Scholar 

  20. Jabs, E.W. et al. Jackson-Weiss and Crouzon syndromes are alleleic with mutations in fibroblast growth factor receptor 2. Nature Genet. 8, 275–279 (1994).

    Article  CAS  Google Scholar 

  21. Rutland, P. et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet. 9, 173–176 (1995).

    Article  CAS  Google Scholar 

  22. Wilkie, A.O.M. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet. 9, 165–172 (1995).

    Article  CAS  Google Scholar 

  23. Mullis, P.E., Patel, M.S., Brickell, P.M., Hindmarsh, P.C. & Brook, C.G.D. Growth characteristic and reponse to growth hormone therapy in patients with hypochondroplasia: genetic linkage of the insulin-like growth factor I gene at chromsome 12q23 to the disease in a subgroup of these patients. Clin. Endocrinol. 34, 265–274 (1991).

    Article  CAS  Google Scholar 

  24. Keegan, K., Johnson, D., Williams, L. & Hayman, M. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc. natl. Acad. Sci. U.S.A. 88, 1095–1099 (1991).

    Article  CAS  Google Scholar 

  25. Johnson, D.E., Lu, J., Chen, H., Wemer, S. & Williams, L.T. The human fibroblast growth factor receptor genes: A common structural arrangement underlies the mechanism for generating receptor forms that differ in their third immunoglobulin domain. Molec. cell. Biol. 11, 4627–4634 (1991).

    Article  CAS  Google Scholar 

  26. Jones, C.T., Mclntosh, I., Keston, M., Ferguson, A. & Brock, D.J.H. Three novel mutations in the cystic fibrosis gene detected by chemical cleavage: Analysis of variant splicing and a nonsense mutation. Hum. molec. Genet. 1, 11–17 (1992).

    Article  CAS  Google Scholar 

  27. Aboul-ela, F., Koh, D., Tinoco, I. & Martin, F.H. Base-base mismatches Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X,Y = A,C,G,T). NUCLIC Acids Res. 13, 4811–4824 (1985).

    Article  CAS  Google Scholar 

  28. Givol, D. & Yayon, A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 6, 3362–3369 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bellus, G., McIntosh, I., Smith, E. et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 10, 357–359 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing